

Human Papillomavirus (HPV): Virology, Types, Disease, and Prevention

¹Dhanvi Singal, ²Chirag Jasoriya, ³Dr. Ruchi Mathur, ⁴Dr. Kashish Parwani, ⁵Ms. Yogita Punjabi

^{1,2}Student, Jaipur Engineering College and Research Centre, Jaipur, Rajasthan

^{3,4}Professor, Jaipur Engineering College and Research Centre, Jaipur, Rajasthan

⁵Assistant Professor, Jaipur Engineering College and Research Centre, Jaipur, Rajasthan

ARTICLE DETAILS

Research Paper

Received: 5/11/2025

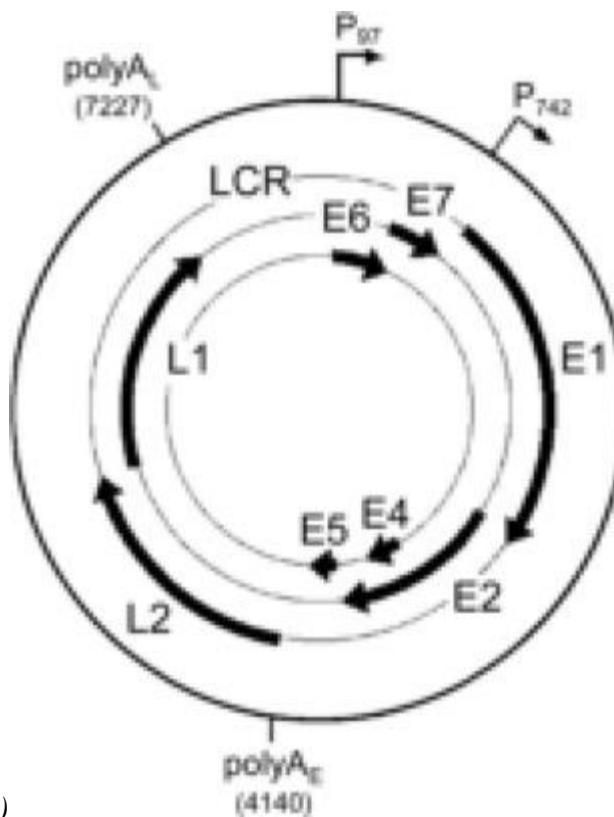
Accepted: 26/11/2025

Published: 31/12/2025

Keywords: *Virology, HPV, Cervical Cancer, Oncogenesis (E6/E7 proteins), HPV Vaccination, HPV Screening and Diagnosis, Public Health Strategy (WHO 90-70-90), HPV Transmission and Epidemiology, AI in Diagnostics, HPV Prevention Strategies.*

ABSTRACT

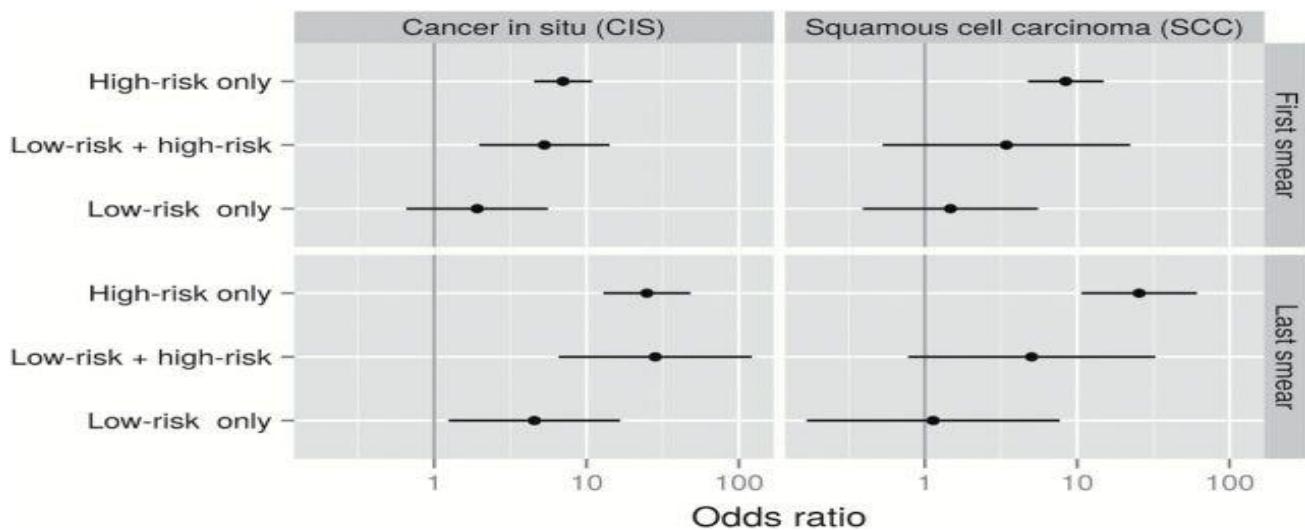
Human papillomavirus represents one of the leading sexually transmitted infections on a global scale, with significant public health implications due to its association with multiple cancers. This paper provides a comprehensive overview of HPV, exploring its virology, genome structure, classification, transmission mechanisms, and oncogenic pathways. Emphasis is placed on distinguishing between low-risk and high-risk HPV types, particularly in the context of cervical, anal, oropharyngeal, and other cancers. We review current diagnostic techniques, treatment protocols, and preventive strategies, including vaccination programs and public health policies. Drawing from WHO, CDC, and UICC data, the paper presents up-to-date global statistics, challenges, and the potential impact of achieving WHO's 90-70-90 cervical cancer elimination strategy. With coordinated global efforts, HPV-associated cancers are preventable and potentially eradicable in the near future.


INTRODUCTION-

HPV, a DNA virus, usually infects the outer layers of the body like the skin and mucous membranes, and it is most often transmitted during sexual contact. Studies suggest that nearly every person who becomes sexually active will experience an HPV infection during their life. The virus's ubiquity and its connection to numerous cancers, particularly cervical cancer, make it a major public health concern. In developing regions where healthcare access is limited, the impact of HPV is disproportionately high. Despite the availability of effective vaccines and screening technologies, lack of awareness, education, and infrastructure have hindered widespread implementation of preventive strategies. This paper aims to provide a thorough review of HPV's biology, clinical implications, and the evolving global response to its prevention and management.

Virology and Genome Structure

HPV is part of the Papillomaviridae family and contains a small, circular, double-stranded DNA genome of about 8,000 base pairs. This genome is broadly organized into three main regions:


- **Early region (E):** Includes genes E1 through E7. E6 and E7 are the most significant in terms of carcinogenesis. E6 binds to p53, promoting its degradation and preventing apoptosis. E7 binds to retinoblastoma protein (Rb), disrupting normal cell cycle regulation.
- **Late region (L):** Composed of L1 and L2 genes which encode the structural capsid proteins. L1 is the primary component of virus-like particles used in HPV vaccines.
- **Long Control Region (LCR):** HPV contains a Long Control Region (LCR), a non-coding sequence responsible for controlling transcription and replication. This streamlined genome design helps the virus exploit the host's cellular processes effectively.

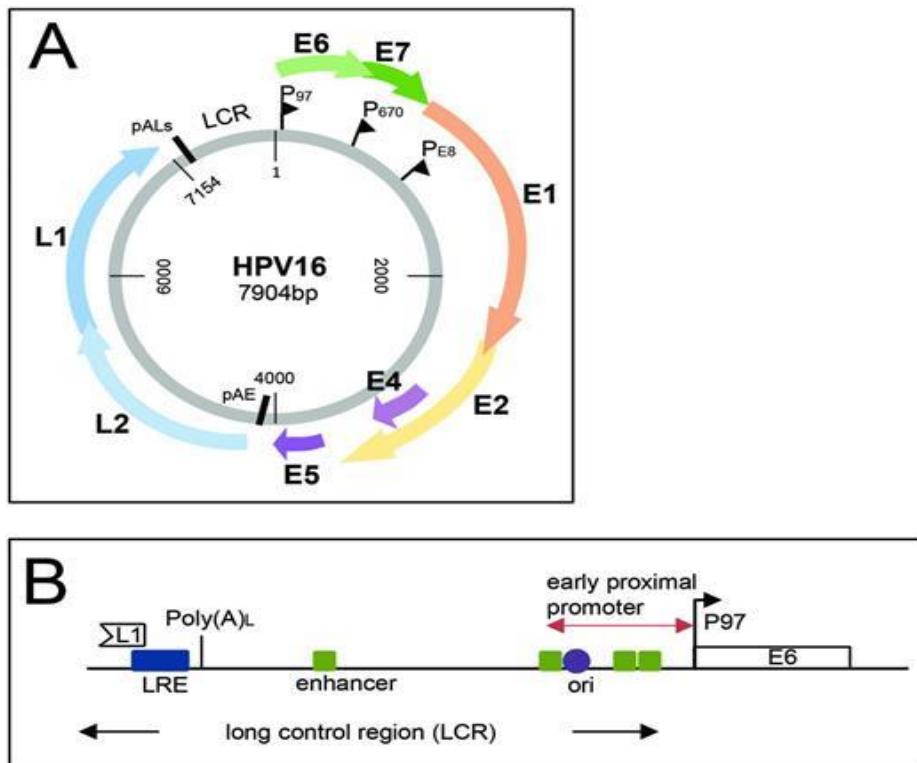
(Source: NCBI [Link](#))

Figure 1: Genome structure of HPV-31

- Classification of HPV Types:** Researchers have discovered more than 200 HPV genotypes, and they are grouped into low-risk and high-risk types according to their cancer-causing potential:
 - Low-risk HPV types (e.g., 6, 11):** Low-risk HPV strains, such as types 6 and 11, usually lead to non-cancerous conditions like genital warts or recurrent respiratory papillomatosis. These types do not merge with the host's DNA and are seldom linked to cancer.
 - High-risk HPV types (e.g., 16, 18, 31, 33, 45, 52):** High-risk HPV strains, including types 16, 18, 31, 33, 45, and 52, are strongly linked to the development of several cancers. In fact, just HPV-16 and 18 account for nearly 70% of cervical cancer cases worldwide. Identifying these high-risk types plays a key role in assessing clinical risk, as well as shaping vaccine development and screening strategies.

(Source: WHO Link)

Figure 2: Low-risk vs. high-risk HPV types

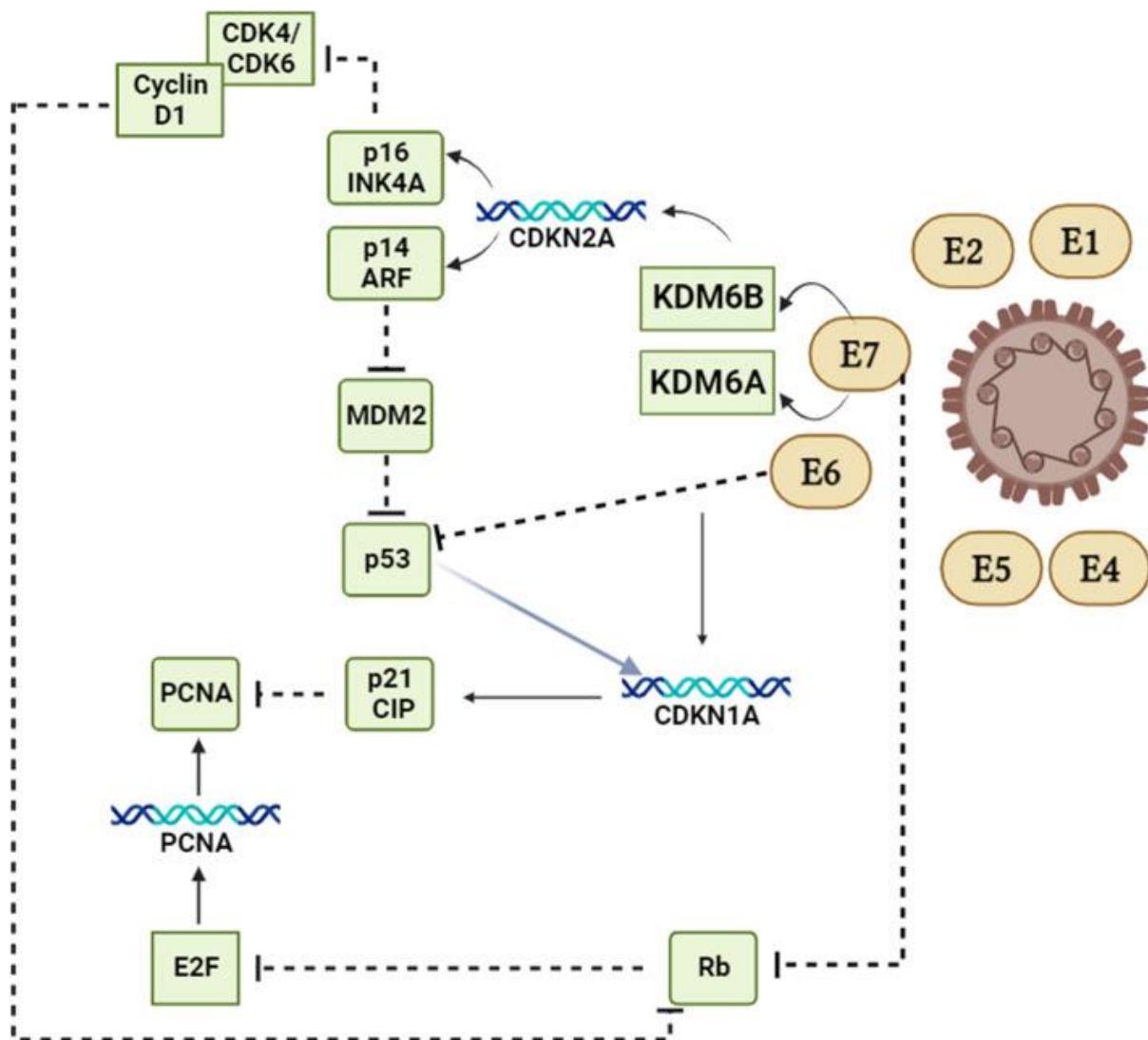

Transmission and Life Cycle

The virus is commonly passed on through intimate skin contact, typically occurring during vaginal, anal, or oral sex. Non-sexual transmission through fomites or vertical transmission from mother to child is rare but possible. The virus enters the body through microabrasions in the epithelium, infecting basal keratinocytes.

The life cycle includes:

1. **Attachment and Entry:** The virus binds to heparan sulfate proteoglycans on the cell surface and enters via endocytosis.
2. **Uncoating:** The virus releases its DNA into the cell's cytoplasm, which is later moved into the nucleus.
3. **Early Gene Expression:** E1 and E2 promote replication, while E6 and E7 manipulate cell cycle control.
4. **Genome Amplification:** Viral DNA is replicated multiple times in the host cell.
5. **Late Gene Expression:** L1 and L2 capsid proteins are synthesized.
6. **Assembly and Release:** Fresh virus particles are put together inside the cell and are released when the infected skin cells naturally shed off.

(Source: [CDC Link](#))


Figure 3: HPV life cycle

Pathogenesis and Oncogenesis

High-risk HPV types are carcinogenic due to the activity of E6 and E7 oncoproteins. These viral proteins promote the degradation of key tumor suppressors:

- **E6-mediated degradation of p53** interferes with apoptosis and DNA repair.
- **E7 inactivation of Rb** leads to uncontrolled cell division.

A long-lasting HPV infection, combined with the virus embedding its DNA into the host cells, makes cancer more likely. Typically, it starts with minor cell abnormalities, then advances to severe changes, and finally may develop into invasive cancer.

(Source: NCBI [Link](#))

Figure 4: Molecular pathway of HPV-induced oncogenesis

Clinical Manifestations

Clinical outcomes depend on the HPV genotype and the host's immune response:

- **Low-risk HPV types** usually lead to non-cancerous growths, like genital warts (condyloma acuminata) or throat warts (laryngeal papillomatosis).
- **High-risk HPV types** are associated with precancerous changes and the development of invasive cancers:
 - Cervical intraepithelial neoplasia (CIN)
 - Cervical cancer

- Anal and penile cancers
- Vulvar and vaginal cancers
- Oropharyngeal squamous cell carcinoma

Global Statistics:

- Cervical cancer is the fourth leading type of cancer that affects women worldwide.
- Every year, around 660,000 new cases of cervical cancer are reported, with nearly 85% of them affecting women in low- and middle-income countries.

Diagnosis and Screening

Early detection through screening is vital in preventing HPV-related cancers:

- **A Pap smear (cytology test)** is used to check cervical cells for early, precancerous changes or signs of cancer.
- **HPV DNA testing:** Identifies presence of high-risk viral types.
- **Co-testing:** Combines cytology and HPV DNA testing for improved sensitivity.
- **Biomarkers:** p16INK4a and Ki-67 are used to distinguish between benign and malignant lesions.

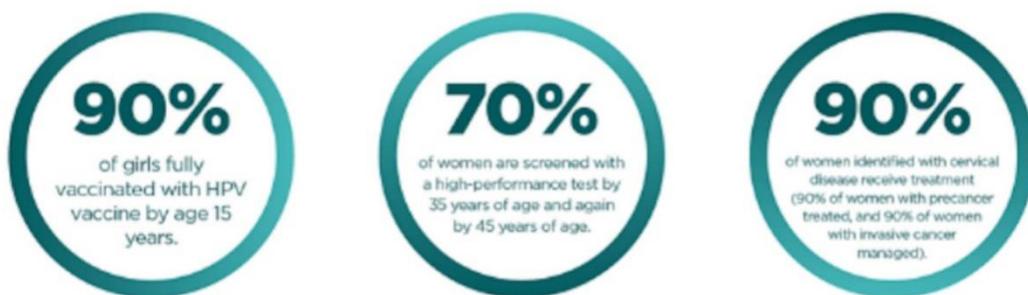
Screening guidelines vary by region, but WHO recommends initiating screening between ages 30–49 and repeating every 5–10 years depending on the method used.

Treatment and Management

Management depends on the lesion type and severity:

- **Genital warts:** Treated with topical agents (e.g., podophyllotoxin), cryotherapy, or surgical excision.
- **Precancerous lesions (CIN):** Managed with LEEP, cryosurgery, or laser ablation.
- **Invasive cancers:** Require multidisciplinary approaches including surgery, radiation therapy, and chemotherapy.

HPV-positive oropharyngeal cancers often have a better prognosis due to increased radiosensitivity.


Prevention Strategies

Vaccination remains the cornerstone of HPV prevention:

- **HPV vaccines are available in different types** — Cervarix (targets 2 types), Gardasil-4 (covers 4 types), and Gardasil-9 (protects against 9 types)
- **Target group:** Girls and boys aged 9–14, before sexual debut.
- **Schedule:** WHO recommends a one- or two-dose schedule.

Over 130 countries have integrated HPV vaccines into national immunization programs. Public education and school-based initiatives are key to increasing vaccine coverage.

Each country should meet the 90:70:90 targets by 2030 to get on the path to eliminate cervical cancer within the next century.

(Source: WHO https://cdn.who.int/media/images/default-source/cover-images/multimedia/infographic-90-70-90.jpg?sfvrsn=43ac9182_7)

Figure 6: The WHO has set a 90–70–90 target to eliminate cervical cancer

Challenges and Future Outlook

Despite available tools, HPV control faces several challenges:

- **Vaccine hesitancy** driven by misinformation and cultural barriers.
- **Limited access** to vaccines and screening in low-resource settings.
- **Gender disparity:** Most programs focus on girls, excluding boys who are also at risk.
- **Innovation:** Integration of AI for image analysis in cytology and molecular diagnostics is a promising frontier.

Future Directions:

- Expand vaccination to boys and underserved populations.
- Use mobile health platforms to improve awareness and compliance.
- Develop therapeutic vaccines targeting E6/E7 for treatment.

Conclusion

HPV presents a serious but preventable threat to global health. By ensuring widespread vaccination, consistent screening, and prompt treatment, we have the potential to protect millions of people and prevent countless deaths. Achieving WHO's 90–70–90 goals by 2030 is feasible and would represent a landmark victory in cancer prevention. Success hinges on global collaboration, resource allocation, and overcoming cultural and logistical barriers to implementation. A future without HPV-related cancers is within our grasp—provided the world commits to action now.

References

1. WHO. Human papillomavirus (HPV) and cervical cancer. <https://www.who.int/news-room/fact-sheets/detail/human-papillomavirus-and-cervical-cancer>
2. NCBI. Molecular Biology of the Human Papillomavirus. <https://www.ncbi.nlm.nih.gov/books/NBK321770/>
3. CDC. HPV Basics. <https://www.cdc.gov/hpv/parents/whatishpv.html>

4. UICC. Global Strategy for the Elimination of Cervical Cancer.
<https://www.uicc.org/what-we-do/driving-global-impact/targeted-commitments/global-strategy-elimination-cervical-cancer>
5. Verywell Health. One HPV Vaccine Dose May Be Enough.
<https://www.verywellhealth.com/one-hpv-vaccine-dose-effectiveness-11777846>
6. The Australian. Karen Canfell Receives AC for Work on Cervical Cancer.
<https://www.theaustralian.com.au/nation/karen-canfell-receives-ac-for-her-work-to-eliminate-cervical-cancer/news-story/36e8e2e56865e33d42755e764f0f3826>