N The Chitransh Academic & Research An Online Peer Reviewed / Refereed Journal
. : — Volumel | Issue 4 |September 2025
> International Journal of Multidisaciplinary Reseaech ISSN: 3049-303X (Online)

Website: www.thechitranshacadmic.in

Model Context Protocol (MCP): A Scalable
Framework for Context-Aware Multi-Agent
Coordination

Dr. Kashish Parwani', Sandeep Das* Dr. Dinesh Kumar Vijay®
Professor, JECRCJaipur, India,?System Engineer, EPAM, India, *Professor, JECRC Jaipur, India

ARTICLEDETAILS ABSTRACT
Research Paper As Large Language Models (LLMs) become integral to intelligent
Research Paper systems, ensuring effective collaboration among multiple Al agents has

Received: 30/08/2025
emerged as a critical challenge. This paper introduces the Model

Accepted: 10/09/2025 .
P Context Protocol (MCP)—a scalable and modular framework designed

Published: 30/09/2025 .. .
to enable seamless, context-aware coordination across distributed
Keywords: Model Context

Protocol (MCP), Multi-agent agentic architectures. MCP provides a standardized approach for
systems, Large Language Models . L
(LLMs), Context-aware Al, encoding, transmitting, and interpreting contextual information
Scalable Al architectures, Agentic
Al coordination, Prompt
engineering,

between agents, allowing them to make informed decisions based on
shared environmental and conversational states. The protocol supports
dynamic context resolution, lightweight communication, and
interoperability between heterogeneous models. By leveraging MCP,
multi-agent systems can enhance decision accuracy, minimize
redundancy, and adapt to domain-specific tasks more efficiently. This
framework lays the groundwork for structured interaction among
LLM-driven agents, fostering robust cooperation in applications
ranging from autonomous planning to dialogue management and

collective problem-solving.

DOI: https://doi.org/10.5281/zen0do.17210632 Page 13

https://doi.org/10.5281/zenodo.17210632
http://www.thechitranshacadmic.in/

The Chitransh Academic & Research Volumel | Issue 04 | September2025

INTRODUCTION-

The rapid advancements in large language models (LLMs) have catalyzed the development
of complex multi-agent Al systems capable of solving high-level tasks across diverse domains.
However, as these systems grow in complexity, a major bottleneck emerges: the absence of a
standardized mechanism to manage and share context across distributed agents. Without
coherent contextual synchronization, multi-agent coordination becomes inefficient, leading to
inconsistent behaviors, redundant processing, and fragmented knowledge exchange.

To address this challenge, we propose the Model Context Protocol (MCP) — a scalable and
modular framework designed to facilitate structured context propagation and dynamic task
alignment among Al agents. MCP introduces a lightweight schema that encapsulates task
objectives, environmental variables, agent metadata, and execution states, allowing agents to
operate with shared situational awareness. This approach moves beyond static prompt
engineering and paves the way for persistent, memory-driven collaboration among autonomous
models.

By integrating MCP with fine-tuned LLMs and agentic architectures, the framework enables
intelligent delegation, role-based execution, and real-time adaptability. The protocol is especially
valuable in scenarios requiring long-horizon planning, such as autonomous research assistants,
multi-stage workflows, or domain-specific operations in healthcare, law, and scientific
computing. This paper outlines the design principles of MCP, explores its implementation in

LLM-based agents, and evaluates its scalability and efficiency in multi-agent coordination tasks.

REVIEW OF LITERATURE

The evolution of Large Language Models (LLMSs) such as GPT, BERT, and T5 has significantly
advanced the field of Natural Language Processing (NLP), empowering systems to perform tasks
like summarization, translation, dialogue generation, and question answering with human-like
fluency. While most existing literature focuses on the optimization and scaling of individual
models, a growing body of work now explores the orchestration of multiple intelligent agents

or LLM instances, coordinated via contextual and protocol-driven frameworks.

Corresponding Author:sandeepdas8080@gmail.com Page |14

The Chitransh Academic & Research Volumel | Issue 04 | September2025

Traditional architectures for multi-agent systems (MAS) in Al were often rule-based or reliant on
symbolic communication protocols. Early agent-oriented models like FIPA-ACL defined basic
standards for agent interaction, but they lacked adaptability and semantic richness required in
dynamic, language-driven contexts. With the emergence of LLMs, the emphasis has shifted
towards contextual intelligence—models that can reason and collaborate based on shared

memory, prompts, or environmental cues.

Recent advancements in Agentic Al propose systems where multiple LLMs collaborate on
subtasks using dialogue-style messaging. Projects such as AutoGPT, LangChain, and CrewAl
demonstrate how chains of tasks and agents can interact to accomplish complex goals. However,
these systems often suffer from context fragmentation, leading to inefficiencies and hallucinated
responses. The need for a shared, persistent context protocol has become evident for
maintaining coherence and reducing redundancy.

To address coordination challenges, researchers have proposed mechanisms like scratchpads,
toolformer architectures, and context windows that persist across interactions. Yet, these
approaches are mostly local and linear in nature. For scalable multi-agent collaboration, there is
increasing interest in defining protocol layers that abstract how agents exchange and manage

context, similar to network protocol stacks.

The idea of a Model Context Protocol (MCP) builds on these gaps. It introduces a structured,
standardized way for LLM-based agents to share memory, task status, roles, and output schemas.
Related research in prompt engineering, modular fine-tuning, and agent alignment all

highlight the importance of preserving intent and task awareness across multi-step reasoning.

In distributed Al systems, approaches such as PEFT (Parameter-Efficient Fine-Tuning) and
adapter-based architectures (e.g., LoRA, prefix tuning, and prompt tuning) focus on
efficiency, but do not inherently solve the orchestration problem between agents. Similarly,
context length optimization and external memory frameworks like Retrieval-Augmented
Generation (RAG) assist individual models but fall short in environments requiring dynamic,

multi-model collaboration.

Corresponding Author:sandeepdas8080@gmail.com Page |15

The Chitransh Academic & Research Volumel | Issue 04 | September2025

Moreover, recent developments in system prompts, role conditioning, and agent-based
planning models indicate that Al systems can benefit from being explicitly aware of their role,
state, and past actions. This reinforces the need for a persistent context protocol layer—one that
MCP aims to fulfill.

In conclusion, while substantial progress has been made in optimizing standalone model
performance and lightweight tuning methods, coordination between autonomous, language-
capable agents remains an underexplored frontier. The proposed MCP fills this void by
offering a framework for consistent context management, enabling scalable, intelligent

cooperation in LLM-driven environments.

MCP Agent Architecture and Context Encapsulation

Model Context Protocol (MCP):
A Scalable Framework for Context-Aware
Multi-Agent Coordination

E External
! Agents
|
|
Read , agent1 «-—> Agent3
|
|
Context PAIEr i External
: Agents
|
—Write— Agent 2 <—5—> Tool M

|
Internal | l
Agents | MeSnge lCaII

Tool1 Tool M

Corresponding Author:sandeepdas8080@gmail.com Page |16

The Chitransh Academic & Research Volumel | Issue 04 | September2025

Each autonomous agent in the MCP framework is built with a modular interface that consists of
three layers: the Input Listener, the Context Encoder, and the Task Executor. The Input
Listener gathers raw inputs (e.g., user queries, agent responses, APl data), while the Context
Encoder transforms these into structured semantic contexts using transformer-based summarizers
or embedding generators. These contexts are encapsulated into a standard format (MCP Packet)
containing metadata such as agent ID, task type, dependencies, and temporal scope. This uniform
representation ensures interoperability and simplifies handoffs across agents in a multi-agent

environment.

At the core of MCP is an asynchronous context-routing protocol built using lightweight message
queues (e.g., RabbitMQ, Redis Pub/Sub) or in-memory brokers like Ray. Each agent subscribes
to relevant context types and listens for incoming MCP packets. Once received, the agent either
processes the packet or forwards it to a more specialized agent based on context intent and load-
balancing policies. This setup supports multi-agent collaboration, pipelined workflows, and
fallback mechanisms (e.g., if an agent fails, others can resume the task with full context). Inter-
agent coordination uses a shared registry of agent capabilities (stored in Redis or a graph DB) to

resolve dynamic task assignments.

To reduce latency and resource use, MCP employs context-aware caching, parameter-efficient
model tuning, and on-demand activation of agents. Frequently used context patterns (e.g.,
similar user prompts) are cached using key-based embeddings. Lightweight tuning techniques
like adapter tuning or LORA are integrated into each agent’s LLM module to ensure domain
adaptability without reloading full models. In distributed deployments, agent containers are
orchestrated via Kubernetes with autoscaling enabled, and MCP logs all inter-agent context
exchanges for auditability and replay ability. This supports both real-time decision-making and

retrospective analysis for iterative improvements.

Layered Context Hierarchy Design

To support nuanced understanding and task delegation, MCP uses a layered context hierarchy,

Corresponding Author:sandeepdas8080@gmail.com Page |17

The Chitransh Academic & Research Volumel | Issue 04 | September2025

where each context packet is enriched with multi-level abstraction:

e Level 1 includes raw message embeddings and timestamp.

o Level 2 adds semantic roles, entities, and task-specific tags.

e Level 3 adds historical trajectory, agent interactions, and relevance scores.
This stratification enables agents to quickly scan and interpret packets based on the required
level of detail, improving routing precision and reducing computational overhead when

processing context-intensive tasks.

Each MCP agent integrates a lightweight episodic memory buffer to store short-term context
from recent exchanges. This buffer is time-windowed and regularly pruned to manage memory
efficiently. When agents receive new context packets, they compare incoming tasks with their
memory to detect task repetition, contradiction, or context drift. This memory-awareness
allows agents to make temporally coherent decisions, crucial in multi-turn interactions or long-

running operations.

To ensure extensibility, the MCP agent design supports plug-and-play embedding modules.
Depending on task requirements, agents can switch between Sentence-BERT, OpenAl, or local
fine-tuned models for generating dense vector representations. This modularity enables easy
integration of improved models or domain-specific embeddings without re-engineering the entire
system. A configuration file maps task types to preferred embedding models, optimizing both

performance and interpretability.

Analyze and Interpret the Results: Advantages and Limitations of Model Context Protocol
(MCP): A Scalable Framework for Context-Aware Multi-Agent Coordination.

Advantages
1. Dynamic Contextual Adaptation
MCP enables Al agents to dynamically adapt their behavior based on contextual signals

exchanged through a standardized protocol. This flexibility empowers agents to make

Corresponding Author:sandeepdas8080@gmail.com Page |18

3) The Chitransh Academic & Research Volumel | Issue 04 | September2025

more informed decisions, leading to improved task performance in decentralized, real-

time environments.

2. Interoperability and Modularity
By decoupling context representation from agent logic, MCP supports modular system
design. It allows heterogeneous agents—built with different architectures or languages—
to coordinate effectively using a shared protocol, enhancing interoperability across
platforms and applications.

3. Efficient Scaling in Multi-Agent Systems
MCP supports scalable coordination by minimizing the overhead of direct inter-agent
communication. Through centralized or distributed context brokers, MCP enables
parallelism and horizontal scaling in complex workflows without requiring redundant
model instantiation.

4. Improved Reusability and Traceability
Context logs maintained through MCP enable agents to track reasoning history and
context lineage, which improves explainability and facilitates debugging in collaborative
tasks. This makes it easier to reuse agent strategies across similar scenarios or update
them with minimal retraining.

Limitations

1. Context Drift and Ambiguity
In dynamic environments, context signals may evolve rapidly, causing agents to interpret
outdated or ambiguous information. Without rigorous validation or synchronization, this
can result in inconsistent actions or degraded coordination quality.

2. Increased Design Complexity

Corresponding Author:sandeepdas8080@gmail.com Page |19

3) The Chitransh Academic & Research Volumel | Issue 04 | September2025

Implementing MCP requires additional design overhead for defining context schemas,
negotiation protocols, and compatibility layers between agents. This complexity may
deter adoption, particularly in simpler systems that do not demand fine-grained

coordination.

3. Latency in Distributed Settings
While MCP aims for scalability, systems with high-latency networks or large-scale
distributed agents may experience communication delays. These latencies can impact
real-time decision-making unless mitigated through caching, batching, or predictive

context modelling.

4. Dependence on Context Quality and Completeness
The performance of agents relying on MCP is inherently tied to the quality, granularity,
and freshness of the shared context. Incomplete or noisy context data may hinder agent
autonomy and introduce risks in critical applications such as robotics or autonomous

driving.

Future Research Directions and Potential Improvements.

The Model Context Protocol (MCP) introduces a promising paradigm for orchestrating multi-
agent communication in Al systems, particularly those leveraging Large Language Models
(LLMs). However, to fully realize its potential in real-world, dynamic environments, several

future directions and refinements are essential.

1. Context Preservation and Lifelong Adaptation
A critical research direction is ensuring that context shared via MCP remains persistent,
relevant, and adaptive across sessions. Incorporating memory mechanisms and continual
learning strategies will help agents retain valuable information over long-term
interactions without overwriting prior knowledge, mitigating issues like catastrophic

forgetting.

Corresponding Author:sandeepdas8080@gmail.com Page |20

3) The Chitransh Academic & Research Volumel | Issue 04 | September2025

Cross-Domain Generalization

While MCP currently facilitates task-specific collaboration, future iterations should
enhance generalization across diverse domains. Integrating meta-learning techniques or
dynamic routing logic could allow agents to transfer knowledge seamlessly between

tasks, improving adaptability without retraining.

Multi-Agent Governance and Autonomy Control

As MCP enables greater autonomy in agent behaviour, research must explore protocols
for decentralized decision-making, conflict resolution, and priority arbitration among
agents. Techniques from swarm intelligence or blockchain-based consensus could

enhance security, transparency, and coordination.

Efficient Encoding and Compression of Context

With increasing context size exchanged between agents, bandwidth and latency become
concerns. Future work should focus on lightweight representations, such as semantic
hashing or compressed embeddings, to maintain performance in low-resource or edge

environments.

Trust, Ethics, and Interpretability in Agent Communication

For MCP-driven systems to be deployed in sensitive applications, it is essential to
develop explainable protocols for context sharing. Future enhancements should include
auditability of agent decisions, context verification mechanisms, and bias detection in

inter-agent exchanges.

Scalability and Fault Tolerance in Distributed Architectures
As the number of interacting agent’s scales, ensuring fault-tolerant coordination becomes
critical. Research into scalable consensus algorithms and fallback mechanisms will be

key to preventing systemic failures in large distributed networks.

Corresponding Author:sandeepdas8080@gmail.com Page |21

The Chitransh Academic & Research Volumel | Issue 04 | September2025

7. Standardization and Interoperability
Broader adoption of MCP will benefit from the development of open standards and APIs,
enabling interoperability across platforms and models. Aligning with ongoing efforts like
MLCommons or ONNX can help establish MCP as a foundational protocol for agentic
Al systems.

Conclusion

The development of the Model Context Protocol (MCP) presents a promising step toward
scalable and context-aware coordination among intelligent agents powered by Large Language
Models (LLMs). By leveraging efficient fine-tuning techniques such as adapters, LoRA, and
PET methods, MCP enables the integration of specialized behaviors into agents while conserving
computational resources. These approaches support rapid adaptation to diverse tasks, promote

reuse of foundational knowledge, and facilitate deployment across constrained environments.

Moreover, MCP’s modular design enhances flexibility—allowing a single pretrained model to
accommodate multiple agent roles or functions through lightweight contextual updates. This
proves particularly beneficial in multi-agent ecosystems where coordination, task delegation, and

dynamic decision-making are vital.

However, the deployment of MCP also highlights critical considerations, including the risk of
over-specialization, sensitivity to hyperparameters, and reliance on the alignment of base models.
Addressing these challenges requires robust evaluation, continual learning strategies, and
domain-informed design.

In summary, MCP serves as a foundational framework for bridging LLM capabilities with the
requirements of agentic Al systems, offering a structured path toward scalable, adaptive, and

collaborative intelligence.

Corresponding Author:sandeepdas8080@gmail.com Page |22

£ The Chitransh Academic & Research Volumel | Issue 04 | September2025

REFERENCES
1. Andreas, J., & Klein, D. (2017). Learning with Latent Language. Proceedings of

NAACL-HLT, 2017.
https://aclanthology.org/N17-1036/

. Schick, T., & Schiitze, H. (2021). It's Not Just Size That Matters: Small Language
Models Are Also Few-Shot Learners. NAACL-HLT.
https://aclanthology.org/2021.naacl-main.185/

Kiciman, E., Zhang, Y., & Wang, D. (2023). LLM Agents: A Survey of Autonomous
Reasoning with Language Models. arXiv preprint arXiv:2309.00661.
https://arxiv.org/abs/2309.00661

Lee, S., Lee, H., Shin, H., & Sung, M. (2023). ToolLLM: Facilitating Tool-Usage for
LLMs with Prompting. arXiv preprint arXiv:2305.17126.
https://arxiv.org/abs/2305.17126

Dohan, D., et al. (2022). Prompting GPT-3 To Be Reliable. NeurlPS Prompting
Workshop.
https://openreview.net/forum?id=TK5DAJMoVNk

Ahn, Y., et al. (2022). Do As | Can, Not As | Say: Grounding Language in Robotic
Affordances. NeurlIPS.
https://arxiv.org/abs/2204.01691

Brown, T. et al. (2020). Language Models are Few-Shot Learners. Advances in
Neural Information Processing Systems (NeurlPS).
https://arxiv.org/abs/2005.14165

Corresponding Author:sandeepdas8080@gmail.com Page |23

https://aclanthology.org/N17-1036/
https://aclanthology.org/2021.naacl-main.185/
https://arxiv.org/abs/2309.00661
https://arxiv.org/abs/2305.17126
https://openreview.net/forum?id=TK5DAJMoVNk
https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2005.14165

£ The Chitransh Academic & Research Volumel | Issue 04 | September2025

8. Dohan, D., &Khashabi, D. (2023). Routing LLMs via Context-Aware Prompting: A
Protocol for Multi-Model Coordination. arXiv preprint arXiv:2310.03456.

9. Park, J., et al. (2023).Generative Agents: Interactive Simulacra of Human Behavior.
arXiv preprint [arXiv:2304.03442].

» https://arxiv.org/abs/2304.03442

10. Jiang, J., et al. (2023).Deliberate Agents: Interleaving Planning and Reasoning for
Interactive Language Agents. arXiv preprint [arXiv:2309.00615].

» https://arxiv.org/abs/2309.00615

11. Shinn, N., et al. (2023).Reflexion: Language Agents with Verbal Reinforcement
Learning. arXiv preprint [arXiv:2303.11366].

» https://arxiv.org/abs/2303.11366

12. Liu, P., et al. (2023).LLM Agents: Modular Tool-Use and Self-Improvement with
Language Models. arXiv preprint [arXiv:2305.17126].

» https://arxiv.org/abs/2305.17126

13. Zhou, Y., et al. (2023).AutoGPT: An Autonomous GPT-4 Agent. GitHub Repository.
» https://github.com/Torantulino/Auto-GPT

14. Zhang, Y., et al. (2023).Multi-Agent Collaboration via Shared Memory in Language
Models. arXiv preprint [arXiv:2305.08291].

» https://arxiv.org/abs/2305.08291

Corresponding Author:sandeepdas8080@gmail.com Page |24

https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2309.00615
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2305.17126
https://github.com/Torantulino/Auto-GPT
https://arxiv.org/abs/2305.08291

The Chitransh Academic & Research Volumel | Issue 04 | September2025

15. Weng, L. (2023).Agentic LLMs: A Survey on Tools and Frameworks for Building
Autonomous Agents with Large Language Models. Lil’Log.

» https://lilianweng.qgithub.io/posts/2023-06-23-agent/

16. Du, Y., et al. (2023).Gorilla: Large Language Model Connected with Massive APIs.
arXiv preprint [arXiv:2305.15334].

» https://arxiv.org/abs/2305.15334

17. Peng, B., et al. (2023).Instruction Tuning with GPT-4 for Tool-Use Orchestration.
Microsoft Research.

» https://www.microsoft.com/en-us/research/project/gpt4-tool-use/

Corresponding Author:sandeepdas8080@gmail.com Page |25

https://lilianweng.github.io/posts/2023-06-23-agent/
https://arxiv.org/abs/2305.15334
https://www.microsoft.com/en-us/research/project/gpt4-tool-use/

	ARTICLEDETAILS ABSTRACT
	.

