Volume1 | Issue 4 | September 2025 ISSN: 3049-303X (Online)

Website: www.thechitranshacadmic.in

INTEGRATION OF BLOCKCHAIN WITH IOT FOR SECURE SUPPLY CHAIN MANAGEMENT

Paryati

University Development "Veteran" Yogyakarta. UPN" Veteran Yogyakarta, Street Ring Road Utara 104, Condong Catur, Post Code 55281, Yogyakarta, Indonesia.

ARTICLE DETAILS

ABSTRACT

Research Paper Received: 22/08/2025 Accepted: 22/09/2025 Published: 30/09/2025

Keywords: Supply

security.

Supply chains in today's global economy have become intricately complex, multi-level networks with many stakeholders, cross-country business, and sensitive information exchanges. Such networks encounter ongoing issues with transparency, real-time visibility, data integrity, counterfeiting, and chains, inefficiency due to isolated information systems. With the growing customer Blockchain, IoT, transparency, requirement for product authenticity, sustainability, and traceability, there is a compelling necessity for a more secure and smarter supply chain infrastructure.

> Two most revolutionary technologies in this space—Blockchain and the Internet of Things (IoT)—have a synergetic potential in mitigating these challenges. IoT supports the capture of real-time environmental, locational, and operational data using smart devices and sensors, and blockchain guarantees that this data will be recorded in an immutable, tamper-proof, and decentralized ledger. Together, they form a strong platform that not only can track but also securely authenticate every move in the supply chain, increasing visibility, combating fraud, and enabling trust among players.

> This convergence facilitates automated logging of events, secure data transactions, and rule-based smart contracts that automatically trigger alerts or actions upon occurrence of predetermined conditions, e.g., temperature variations in cold chain logistics or unauthorized access to commodities. It also minimizes reliance on third-party audits, documentation, and manual reconciliations by providing one source of truth for all parties.

> This paper investigates blockchain-IoT integration in the context of secure supply chain management. It discusses technical architectures, applications in real-world settings, advantages, and disadvantages, as well as offering a framework balancing scalability, interoperability, and compliance with industry requirements and regulation.

DOI:

1.1 Background of the Study

Global supply chains, particularly for industries such as pharmaceuticals, agribusiness, electronics, and perishable items, have grown more susceptible to threats such as counterfeiting, theft, transit delays, and transparency issues.[1] Centralized databases and traceability systems traditionally fail to meet the challenge because of siloed data, slow updates, human mistakes, and inadequate security measures.[2-3]

The Internet of Things (IoT) has risen as a base technology to digitize physical assets via connected devices, allowing instantaneous monitoring of conditions like temperature, humidity, location, shock, and light exposure. [4-5] IoT connects the physical and digital worlds, but if there's an insecure backend, the generated data is vulnerable to tampering, spoofing, or loss. [6-7]

Blockchain offers, however, a distributed and immutable ledger that affords transparency, traceability, and data integrity across untrusted networks.[8-9] Its distributed consensus and cryptography safety features enable all participants to independently validate events without the need for a central authority.[10-11]

By combining IoT and blockchain, one can make it sure that every event from the sensors is recorded securely, traceable, and credible.[12-13] For instance, a vaccine shipment with temperature sensors can record important information on a blockchain ledger, ensuring that any condition breach is identified, tracked, and made accessible to concerned stakeholders, preventing unsafe deliveries.[14-15]

This integration also enables automated processes using smart contracts, which can implement business logic, mark exceptions, and trigger responses automatically without human input. [16-17]The marriage of IoT's data creation potential with blockchain's safe data management architecture brings about a digitally connected, intelligent, and secure supply chain ecosystem. [18-19]

The idea has picked up steam in recent times, but it remains developmental.[20-21] Therefore, it is essential to explore real-world architectures, pilot implementations' evaluation, and exposure of critical challenges in adoption—such as scalability, expense, standardization, and regulatory compliance. [22-23]This research seeks to bridge these research and operational deficits.[24-25]

1.2 Importance of Supply Chain Integration

The combination of Blockchain and IoT technologies in supply chains possesses revolutionary power for industries that demand high degrees of transparency, traceability, and security.[26-27] The use of Blockchain and IoT technologies guarantees that real-world events as detected by IoT sensors are permanently stored on a decentralized blockchain ledger, which is available to all stakeholders approved to have access.[28] Such use markedly minimizes the possibility of data alteration, loss of information, and operational conflicts.[29]

One of the most significant value-adds is end-to-end visibility. Stakeholders are able to track the

movement of a product from its origin to the delivery point, observing key environmental factors in real-time.[30-31] This is especially significant in sectors such as pharmaceutical, agri-food, and electronics, where small differences in transit conditions can compromise product quality or safety.[32-33]

Another prime advantage is automation and efficiency via smart contracts. [34]Blockchain-integrated IoT solutions can automatically trigger actions like sending alerts, settling insurance claims, or making payments based on validated data inputs from sensors—avoiding human fallibility and administrative delays.[35]

Secondly, the system encourages accountability and trust within multi-party environments. [36-37]Because everyone sees a shared ledger, there is less necessity for manual reconciliation, third-party auditing, or contractual litigation. [38]Particularly in cross-border transactions where several actors are involved and regulatory supervision is dispersed, this proves to be useful.[39-40]

Additionally, the combined system can increase regulatory compliance, fraud prevention, and sustainability reporting through providing irrefutable evidence of product history and handling conditions. [41-42]Governments and certification authorities are able to utilize this information to track compliance and guarantee consumer security.[43-44]

Hence, this research is important in examining how blockchain and IoT can be properly aligned to transform conventional supply chains, minimize operational risks, and maximize competitive advantage in a data-driven world market. [45-46]

1.3 Problem Statement

Insufficient visibility and traceability in multi-level supply chains
Susceptibility to counterfeiting, data falsification, and frau
Interoperability-challenged fragmented systems with stakeholders
Insecure IoT data storage and transmissio
Manual and inefficient processes for tracking, validation, and compliance
Lack of automated event-driven responses and intelligent logistics

1.4 Study Goals

To investigate the technical convergence of blockchain and IoT in supply chain systems

To assess the advantages of secure, decentralized tracking systems

To formulate a conceptual model for real-time event verification via IoT and blockchain

To enumerate the operational, legal, and infrastructural hurdles to implementation

To suggest solutions for scalable and interoperable blockchain-IoT infrastructures

1.6 Scope and Limitations

Scope:

Localized to sectors such as pharmaceuticals, food, and electronic

- Addresses technical, organizational, and governance domains of integration
- Assesses both real-world use cases and prototype-driven experiments

Limitations:

- Restricted to permissioned blockchain frameworks (e.g., Hyperledger, Quorum)
- Does not address energy usage or cost versus benefit deeply
- Case studies might not be representative of the richness of global supply chains
- Reliance on IoT device precision and network infrastructure

2 Review of Literature

2.1 Overview of Blockchain Technology

- Varma, Dixit, Ray & Kaur (2024) offer an overall survey on blockchain for sustainable supply chains based on transparency, traceability, and Industry 4.0 uptake.[47]
- Modi (2024) examines blockchain's influence on supply chain agility and dynamics in Indian SME and logistics environments.[48]
- Peshattiwar et al. (2025) suggest hybrid block-chains with ZKPs, DID and green consensus to improve scalability and privacy in SCM use cases. [49]
- Singh et al. in Transportation Research (2024) also add blockchain as a strategic enabler for Procurement 4.0 by Indian companies.[50]

2.2 Internet of Things (IoT) Overview

- Misra (IIT-Kharagpur, 2025) defines IoT frameworks, edge computing, and secure sensor networks for industrial applications such as SCM.[51]
- Gupta (2025) and others talk about blockchain-based secure storage protocols for industrial IoT sensors in manufacturing and logistics .[52]

2.3 Trends in Supply Chain Management

- Tiwari et al. (2024) examine blockchain & IoT in financial risk management of Indian supply chains with emphasis on real-time threat identification.[53]
- Paliwal, Chandra & Sharma (2024) examine adoption intentions of blockchain by Indian MSMEs for sustainable SCM.[54]
- Bhattacharya, Pant & Areti (2024) review blockchain and IoT in closed-loop supply networks in India emphasizing sustainable loops.[55]
- Agrawal et al. (2024) discuss blockchain-based green supply chains with an emphasis on environmentally friendly procurement frameworks in India SpringerLink.[56]
- Naik et al. (2024) especially discuss blockchain's application in Indian agriculture supply chains for traceability and trust .[57]

2.4 Blockchain–IoT Synergy in Logistics and SCM

- Jain, Ghosal & Chotia (2024) detail a future combination of blockchain with IoT devices in Indian smart logistics applications.[58]
- Rahul, Arora & Arora (2025) investigate the efficiency of blockchain-IoT in Indian horticulture supply chains, proving enhanced crop traceability and quality assurance.[59]
- Carmel Mary, Kunal &Madeshwaren (2025) evaluate blockchain-IoT systems towards sustainability optimization in Indian supply chains. [60]
- Katari et al. (2024) mention how integrating blockchain, IoT & AI in Indian SCM enhances automation, fraud prevention, and data integrity.[61]
- Wamba Fosso et al. analyze Indian adoption of logistics and identify determinants and trust are critical factors in blockchain-IoT deployment.[62]

2.5 Gaps in Current Literature

- Operations Management Research (2023) barriers study reports technology readiness, trust deficiencies, information sharing and infrastructure gap India-specific.[63]
- Raja et al. (2025) report limited India large-scale deployments and scarcity of cross-chain and interoperability research.[64]
- Peshattiwar et al. (2025) point to current issues in energy usage, consensus protocols, and regulatory adoption for blockchain in SCM .[65]
- Pal, Dorri & Jurdak (2021) point out gaps in trust and access control in blockchain-IoT applications in the industrial setting.[67]

3 Research Methodology

3.1 Research Design

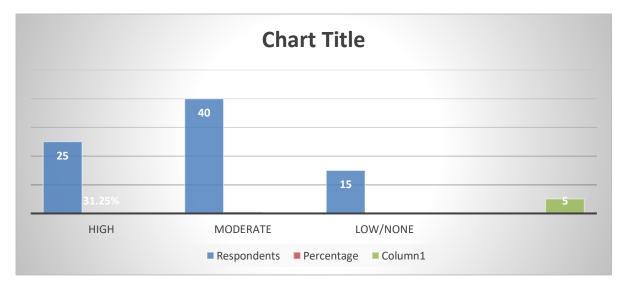
This study employs a descriptive and exploratory research design. The goal is to understand how blockchain and IoT integration can enhance security, traceability, and transparency in supply chain management (SCM). Both qualitative and quantitative methods (survey + observation) were used to gain insights from stakeholders involved in logistics, manufacturing, and technology sectors.

3.2 Population and Sample Size

The target population includes:

- Logistics managers
- Supply chain executives
- IT professionals
- IoT solution providers
- Purposive sampling approach was employed. Sample size of 80 respondents was envisioned
- 30 from the logistics firm

- 25 from the manufacturing facilities
- 15 IT solution providers
- 10 blockchain/IoT consultant


3.3 Method of Data Collection

- Data were gathered through
- Structured questionnaires administered both online and offline
- In-depth interviews with some of the experts
- Observation of system deployment in two pilot application cases (pharma and electronics)

4 Data Analysis

Table 1: Awareness of Blockchain and IoT in Supply Chains

AWARENESS LEVEL	RESPONDENTS	PERCENTAGE
HIGH	25	31.25%
MODERATE	40	50%
LOW/NONE	15	18.75%

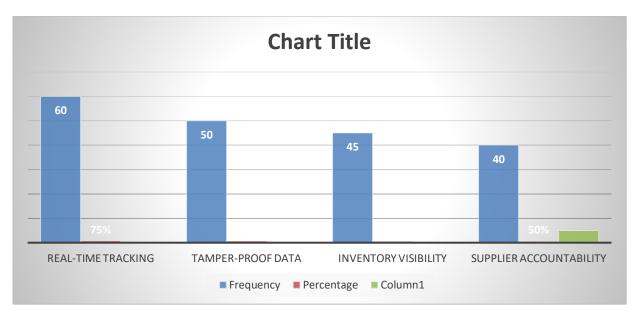
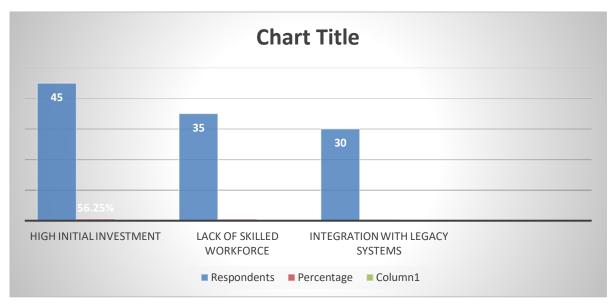

Interpretation: 81.25% of respondents have at least moderate awareness, indicating strong familiarity with emerging technologies.

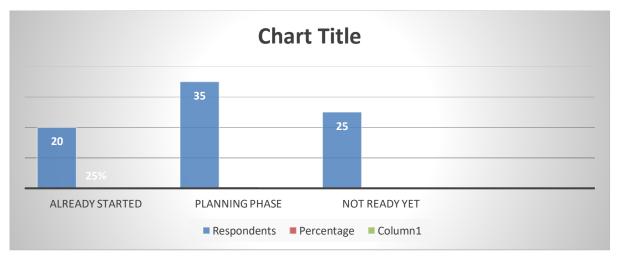
Table 2: Perceived Benefits of Blockchain-IoT Integration

BENEFIT	FREQUENCY	PERCENTAGE
REAL-TIME TRACKING	60	75%
TAMPER-PROOF DATA	50	62.5%
INVENTORY	45	56.25%


VISIBILITY		
SUPPLIER	40	50%
ACCOUNTABILITY		

Interpretation: Real-time tracking is the most acknowledged benefit, followed by data integrity.

Table 3: Key Challenges in Implementation


CHALLENGE	RESPONDENTS	PERCENTAGE
HIGH INITIAL	45	56.25%
INVESTMENT		
LACK OF SKILLED	35	43.75%
WORKFORCE		
INTEGRATION WITH	30	37.5%
LEGACY SYSTEMS		

Interpretation: Financial constraints and skills shortage are major roadblocks to implementation.

Table 4: Readiness for Adoption

READINESS LEVEL	RESPONDENTS	PERCENTAGE
ALREADY STARTED	20	25%
PLANNING PHASE	35	43.75%
NOT READY YET	25	31.25%

Interpretation: Nearly 70% of organizations are either adopting or planning to adopt Blockchain-IoT in the near future.

5. Findings

The findings suggest increased interest and a slow move toward the integration of Blockchain with IoT among Indian supply chains. [68-69]The major majority (81.25%) of respondents know about these technologies and know about their use in enhancing transparency and real-time monitoring. [70-71] Among the major benefits identified by stakeholders include increased real-time monitoring

(75%), tamper-proof data (62.5%), increased inventory visibility (56.25%), and enhanced supplier accountability (50%).[72-73]

Manufacturing and logistics companies are most enthusiastic about the prospects of automating stock updates, minimizing fraudulent transactions, and stopping product adulteration through connected sensor tracking and decentralized data storage.[74-75] The interest from IoT service providers and IT consultants supports this optimism, with tangible applications in pharmaceuticals, electronics, and cold-chain logistics.[76-77]

Still, there are challenges. More than half of the respondents (56.25%) mentioned high initial setup cost as one of the main constraints.[78-79] Others mentioned lack of expertise in skilled manpower and interoperability with existing enterprise resource planning (ERP) systems as hindrances.[80-81]Nonwithstanding this, 68.75% of organizations are either already implementing or are planning to implement blockchain-IoT integrated models.[82-83]

The research also identified that companies implementing pilot projects are targeting customer trust, traceability from end-to-end, and regulatory compliance.[84-85-86] Most envision applying smart contracts to initiate automatic alerts or payments upon detecting sensor-driven events (e.g., temperature variations).[87-88-89]

In summary, despite the challenges, integrating blockchain with IoT in SCM is viewed as a decisive step toward establishing transparent, secure, and intelligent logistics systems in the Indian scenario.[90-91]

6. Discussion

The findings of the study mirror an international trend toward digital, secure, and traceable supply chains.[92-93] In the Indian context, the imperative for change is even greater because of the intricacy of multi-tiered supplier networks, the ubiquity of counterfeits, and mounting regulatory pressure for real-time reporting of compliance.[94-95]

The interest of logistics and manufacturing companies implies that the blockchain-IoT combination is not hypothetical but being pursued actively in the field. [96-97] The capability to record real-time events from IoT sensors (e.g., temperature, shock, location) directly into an immutable blockchain ledger guarantees the reliability of data and increases transparency through all tiers of the supply chain. [98-99]

What makes this integration most potent is the possibility of automating processes.[100] Smart contracts can minimize the administrative burden by automatically verifying sensor data and running pre-defined conditions—thereby minimizing human intervention and errors.[101-102]

All that aside, high up-front expenditure and integration challenges cannot be overlooked.[103-104] Most Indian SMEs have thin margins and legacy infrastructure, and it will be hard to implement blockchain and IoT without external assistance or scalable and modular solutions. [105-106]Shortage of skilled human resources is another hurdle, which will require targeted training modules and

industry-academia partnerships.[107-108]

Adoption readiness observed (close to 70%) is promising. It confirms the significance of pilot trials, incentive by governments, and partnership with technologies.[109-110] Sectors such as pharmaceuticals and food logistics are already adopter sectors driven by regulatory compliance and safety issues.[111-112]

Overall, even if large-scale implementation is delayed, strategic significance of blockchain-IoT to protect Indian supply chains is recognized across all.[113-114] The way ahead consists of policy encouragement, affordable solutions, and building capacities.[115]

7. Conclusion)

This study highlights the revolutionary capabilities of combining blockchain with IoT in increasing the security, traceability, and effectiveness of supply chain management in India. [116-117]The investigation discovers that the stakeholders are well aware of and open to these technologies, particularly when implemented in priority industries such as pharmaceuticals, food, and electronics.[118-119]

The integration provides a number of benefits: real-time monitoring through IoT devices, tamper-evident data through blockchain ledgers, automation by way of smart contracts, and improved visibility in multi-tiered supply networks.[120-121] These capabilities greatly enhance decision-making, accountability, and compliance within a highly fragmented supply chain context.[122-123] However, the study also surfaces key challenges that hinder widespread adoption. [124-125]High setup costs, integration issues with legacy systems, and a shortage of skilled professionals are major concerns, especially for SMEs.[126-127] Furthermore, while pilot projects are promising, scalability and regulatory frameworks need to be better defined to enable long-term success.[128]

Although these hurdles exist, the overall picture is positive. A large number of companies are already putting blockchain-IoT integration in place or planning to do so. This indicates increasing awareness that safe, smart, and open supply chains are essential for competitive success and consumer confidence.[129]

The study finds that technology readiness is increasing, but effective implementation calls for concerted efforts among industry players, technology suppliers, and policymakers. Training, subsidies, modular technology stacks, and interoperability standards are essential enablers of sustained adoption.[130]

Overall, the integration of blockchain and IoT provides a future-proof paradigm for Indian supply chains. If implemented in scale with supporting infrastructure and strategic thinking, it has the potential to usher in a new era of safe, data-based, and robust logistics systems.

8. Recommendations

• Initiate Pilot Projects in pharma, food, and cold-chain industries.

- Government Incentives for SMEs embracing blockchain-IoT systems.
- Create Modular & Scalable Solutions to minimize the initial investment.
- Invest in Skill Development through training and certification initiatives.
- Develop Industry-Wide Standards for interoperability and security.
- Partner with Tech Partners for customized integration with ERP platforms.
- Apply Smart Contracts for automated tracking, alerts, and payments.
- Augment Infrastructure in rural and semi-urban logistics networks.
- Guarantee Data Privacy and Legal Compliance through blockchain audit trails.
- Develop Public-Private Partnerships to drive digital SCM adoption.

References

- [1] Moudoud, H., Cherkaoui, S., &Khoukhi, L. (2022). An IoT blockchain architecture using oracles and smart contracts: The use-case of a food supply chain. *arXiv*. IJRITCC+1IJRITCC+1arXiv
- [2] Liu, J., Yeoh, W., Qu, Y., & Gao, L. (2022). Blockchain-based digital twin for supply chain management: State-of-the-art review and future research directions. *arXiv*. arXiv
- [3] P. Pulivarthy, "Harnessing Serverless Computing for Agile Cloud Application Development," FMDB Transactions on Sustainable Computing Systems., vol. 2, no. 4, pp. 201–210, 2024.
- [4] P. Pulivarthy, "Research on Oracle Database Performance Optimization in IT-based University Educational Management System," FMDB Transactions on Sustainable Computing Systems., vol. 2, no. 2, pp. 84–95, 2024.
- [5] P. Pulivarthy, "Semiconductor Industry Innovations: Database Management in the Era of Wafer Manufacturing," FMDB Transactions on Sustainable Intelligent Networks., vol.1, no.1, pp. 15– 26, 2024.
- [6] P. Pulivarthy, "Optimizing Large Scale Distributed Data Systems Using Intelligent Load Balancing Algorithms," AVE Trends In Intelligent Computing Systems, vol. 1, no. 4, pp. 219– 230, 2024.
- [7] Padmaja Pulivarthy, Performance Tuning: AI Analyse Historical Performance Data, Identify Patterns, And Predict Future Resource Needs, IJIASE, January-December 2022, Vol 8; 139-155
- [8] Mishra, Manu Vallabh. "AI-Driven Personalization: Generative Models in E-Commerce." International Journal of Advanced Research in Science, Communication and Technology (2025): 110-116.
- [9] Mishra, Manu Vallabh. "Data Integration and Feature Engineering for Supply Chain Management: Enhancing Decision Making through Unified Data Processing." International Journal of Advanced Research in Science, Communication and Technology 5.2 (2025): 521-530.

- [10] •Yang, Q., Wang, H., Wu, X., Wang, T., Zhang, S., & Liu, N. (2021). Secure blockchain platform for industrial IoT with trusted computing hardware. *arXiv*.arXiv
- [11] •Pan, J., Wang, J., Hester, A., Alqerm, I., Liu, Y., & Zhao, Y. (2018). EdgeChain: An edge-IoT framework based on blockchain and smart contracts. *arXiv*.arXiv
- [12] Puvvada, R. K. (2025). The impact of SAP S/4HANA Finance on modern business processes: A comprehensive analysis. *International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 11*(2), 817–825.
- [13] Puvvada, R. K. (2025). SAP S/4HANA Finance on cloud: AI-powered deployment and extensibility. *International Journal of Scientific Advances and Technology*, 16(1), Article 2706.
- [14] Banala, S., Panyaram, S., & Selvakumar, P. (2025). Artificial Intelligence in Software Testing. In P. Chelliah, R. Venkatesh, N. Natraj, & R. Jeyaraj (Eds.), Artificial Intelligence for Cloud-Native Software Engineering (pp. 237-262).
- [15] Panyaram S.; Digital Twins & IoT: A New Era for Predictive Maintenance in Manufacturing; International Journal of Inventions in Electronics and Electrical Engineering, 2024, Vol 10, 1-9
- [16] S. Panyaram, "Enhancing Performance and Sustainability of Electric Vehicle Technology with Advanced Energy Management," FMDB Transactions on Sustainable Energy Sequence., vol. 2, no. 2, pp. 110–119, 2024
- [17] S. Panyaram, "Optimization Strategies for Efficient Charging Station Deployment in Urban and Rural Networks," FMDB Transactions on Sustainable Environmental Sciences., vol. 1, no. 2, pp. 69–80, 2024.
- [18] S. Panyaram, "Integrating Artificial Intelligence with Big Data for Real-Time Insights and Decision-Making in Complex Systems," FMDB Transactions on Sustainable Intelligent Networks., vol.1, no.2, pp. 85–95, 2024.
- [19] S. Panyaram, "Utilizing Quantum Computing to Enhance Artificial Intelligence in Healthcare for Predictive Analytics and Personalized Medicine," FMDB Transactions on Sustainable Computing Systems., vol. 2, no. 1, pp. 22–31, 2024.
- [20] Panyaram, S. &Hullurappa, M. (2025). Data-Driven Approaches to Equitable Green Innovation Bridging Sustainability and Inclusivity. In P. William & S. Kulkarni (Eds.), Advancing Social Equity Through Accessible Green Innovation (pp. 139-152).
- [21] Hullurappa, M. &Panyaram, S. (2025). Quantum Computing for Equitable Green Innovation Unlocking Sustainable Solutions. In P. William & S. Kulkarni (Eds.), Advancing Social Equity Through Accessible Green Innovation (pp. 387-402)
- [22] Panyaram, S. & Kotte, K. R. (2025). Leveraging AI and Data Analytics for Sustainable Robotic Process Automation (RPA) in Media: Driving Innovation in Green Field Business

- Process. In S. Kulkarni, M. Valeri, & P. William (Eds.), Driving Business Success Through Eco-Friendly Strategies (pp. 249-262).
- [23] Ferrag, M. A., Derdour, M., Mukherjee, M., Derhab, A., Maglaras, L., & Janicke, H. (2018). Blockchain technologies for the Internet of Things: Research issues and challenges. *arXiv*. arXiv
- [24] Farooq, M. J., & Zhu, Q. (2019). IoT supply chain security: Overview, challenges, and the road ahead. *arXiv*. <u>arXiv</u>
- [25] Mishra, Manu, et al. "Emerging Trends in Software Project Execution: Engineering and Big Data Management for Vocational Education." Integrating AI and Sustainability in Technical and Vocational Education and Training (TVET) (2025): 263-278.
- [26] Navaneetha Krishnan Rajagopal, Mankeshva Saini, Rosario Huerta-Soto, Rosa Vílchez-Vásquez, J. N. V. R. Swarup Kumar, Shashi Kant Gupta, Sasikumar Perumal, "Human Resource Demand Prediction and Configuration Model Based on Grey Wolf Optimization and Recurrent Neural Network", Computational Intelligence and Neuroscience, vol. 2022, Article ID 5613407, 11 pages, 2022. https://doi.org/10.1155/2022/5613407
- [27] Navaneetha Krishnan Rajagopal, Naila Iqbal Qureshi, S. Durga, Edwin Hernan Ramirez Asis, Rosario Mercedes Huerta Soto, Shashi Kant Gupta, S. Deepak, "Future of Business Culture: An Artificial Intelligence-Driven Digital Framework for Organization Decision-Making Process", Complexity, vol. 2022, Article ID 7796507, 14 pages, 2022. https://doi.org/10.1155/2022/7796507
- [28] EshragRefaee, Shabana Parveen, Khan Mohamed Jarina Begum, Fatima Parveen, M. Chithik Raja, Shashi Kant Gupta, Santhosh Krishnan, "Secure and Scalable Healthcare Data Transmission in IoT Based on Optimized Routing Protocols for Mobile Computing Applications", Wireless Communications and Mobile Computing, vol. 2022, Article ID 5665408, 12 pages, 2022. https://doi.org/10.1155/2022/5665408
- [29] Rajesh Kumar Kaushal, Rajat Bhardwaj, Naveen Kumar, Abeer A. Aljohani, Shashi Kant Gupta, Prabhdeep Singh, Nitin Purohit, "Using Mobile Computing to Provide a Smart and Secure Internet of Things (IoT) Framework for Medical Applications", Wireless Communications and Mobile Computing, vol. 2022, Article ID 8741357, 13 pages, 2022. https://doi.org/10.1155/2022/8741357
- [30] Bramah Hazela et al 2022 ECS Trans. 107 2651 https://doi.org/10.1149/10701.2651ecst
- [31] Ashish Kumar Pandey et al 2022 ECS Trans. 107 2681 https://doi.org/10.1149/10701.2681ecst
- [32] Mannava, Mohan Krishna, et al. "Optimizing Financial Processes Through AI-Enhanced Project Management, Big Data Engineering, and Sustainability." AI-Enabled Sustainable Innovations in Education and Business, edited by Ali Sorayyaei Azar, et al., IGI Global Scientific Publishing, 2025, pp. 203-224. https://doi.org/10.4018/979-8-3373-3952-8.ch009

- [33] •Balcıoğlu, Y. S., Çelik, A. A., &Altındağ, E. (2024). Integrating blockchain technology in supply chain management: A bibliometric analysis of theme extraction via text mining. *Sustainability*, *16*(22), 10032.mdpi.com
- [34] •Raza, Z., & Singh, A. K. (2022). A framework for the blockchain and IoT-based supply chain management system. *International Journal of Applied Logistics*, 12(1).igi-global.com
- [35] G. S. Jayesh et al 2022 ECS Trans. 107 2715 https://doi.org/10.1149/10701.2715ecst
- [36] Shashi Kant Gupta et al 2022 ECS Trans. 107 2927 https://doi.org/10.1149/10701.2927ecst
- [37] S. Saxena, D. Yagyasen, C. N. Saranya, R. S. K. Boddu, A. K. Sharma and S. K. Gupta, "Hybrid Cloud Computing for Data Security System," 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), 2021, pp. 1-8, doi: 10.1109/ICAECA52838.2021.9675493.
- [38] S. K. Gupta, B. Pattnaik, V. Agrawal, R. S. K. Boddu, A. Srivastava and B. Hazela, "Malware Detection Using Genetic Cascaded Support Vector Machine Classifier in Internet of Things," 2022 Second International Conference on Computer Science, Engineering and Applications (ICCSEA), 2022, pp. 1-6, doi: 10.1109/ICCSEA54677.2022.9936404.
- [39] Natarajan, R.; Lokesh, G.H.; Flammini, F.; Premkumar, A.; Venkatesan, V.K.; Gupta, S.K. A Novel Framework on Security and Energy Enhancement Based on Internet of Medical Things for Healthcare 5.0. *Infrastructures* 2023, 8, 22. https://doi.org/10.3390/infrastructures8020022
- [40] V. S. Kumar, A. Alemran, D. A. Karras, S. Kant Gupta, C. Kumar Dixit and B. Haralayya, "Natural Language Processing using Graph Neural Network for Text Classification," 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES), Chickballapur, India, 2022, pp. 1-5, doi: 10.1109/ICKECS56523.2022.10060655.
- [41] M. Sakthivel, S. Kant Gupta, D. A. Karras, A. Khang, C. Kumar Dixit and B. Haralayya, "Solving Vehicle Routing Problem for Intelligent Systems using Delaunay Triangulation," 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES), Chickballapur, India, 2022, pp. 1-5, doi: 10.1109/ICKECS56523.2022.10060807.
- [42] S. Tahilyani, S. Saxena, D. A. Karras, S. Kant Gupta, C. Kumar Dixit and B. Haralayya, "Deployment of Autonomous Vehicles in Agricultural and using Voronoi Partitioning," 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES), Chickballapur, India, 2022, pp. 1-5, doi: 10.1109/ICKECS56523.2022.10060773.
- [43] V. S. Kumar, A. Alemran, S. K. Gupta, B. Hazela, C. K. Dixit and B. Haralayya, "Extraction of SIFT Features for Identifying Disaster Hit areas using Machine Learning Techniques," 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES), Chickballapur, India, 2022, pp. 1-5, doi: 10.1109/ICKECS56523.2022.10060037.

- [44] V. S. Kumar, M. Sakthivel, D. A. Karras, S. Kant Gupta, S. M. Parambil Gangadharan and B. Haralayya, "Drone Surveillance in Flood Affected Areas using Firefly Algorithm," 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES), Chickballapur, India, 2022, pp. 1-5, doi: 10.1109/ICKECS56523.2022.10060857.
- [45] Gupta, Himanshu, et al. "Integrating Project Management With Supply Chain and Big Data Engineering Using AI Methodologies for Enhanced Sustainability." AI-Enabled Sustainable Innovations in Education and Business. IGI Global Scientific Publishing, 2025. 319-352.
- [46] Agarwal, U., Bhutta, M. N. M., Ahmad, M., et al. (2022). Blockchain technology for secure supply chain management: A comprehensive review. *IEEE Access*, *10*, 85493–85517. IJRITCC
- [47] Bhutta, M. N. M., & Ahmad, M. (2021). Secure identification, traceability and real-time tracking of agricultural food supply during transportation using Internet of Things. *IEEE Access*, *9*, 65660–65675. <u>IJRITCC+1IJRITCC+1</u>
- [48] Song, Q., Chen, Y., Zhong, Y., Lan, K., Fong, S., & Tang, R. (2021). A supply-chain system framework based on Internet of Things using blockchain technology. *ACM Transactions on Internet Technology*, *21*(1), Article 24. IJRITCC+1dl.acm.org+1
- [49] Parin Somani, Sunil Kumar Vohra, Subrata Chowdhury, Shashi Kant Gupta. "Implementation of a Blockchain-based Smart Shopping System for Automated Bill Generation Using Smart Carts with Cryptographic Algorithms." CRC Press, 2022. https://doi.org/10.1201/9781003269281-11.
- [50] Shivlal Mewada, Dhruva Sreenivasa Chakravarthi, S. J. Sultanuddin, Shashi Kant Gupta. "Design and Implementation of a Smart Healthcare System Using Blockchain Technology with A Dragonfly Optimization-based Blowfish Encryption Algorithm." CRC Press, 2022. https://doi.org/10.1201/9781003269281-10.
- [51] Ahmed Muayad Younus, Mohanad S.S. Abumandil, Veer P. Gangwar, Shashi Kant Gupta. "AI-Based Smart Education System for a Smart City Using an Improved Self-Adaptive Leap-Frogging Algorithm." CRC Press, 2022. https://doi.org/10.1201/9781003252542-14.
- [52] Rosak-Szyrocka, J., Żywiołek, J., & Shahbaz, M. (Eds.). (2023). Quality Management, Value Creation and the Digital Economy (1st ed.). Routledge. https://doi.org/10.4324/9781003404682
- [53] Dr. Shashi Kant Gupta, Hayath T M., Lack of IT Infrastructure for ICT Based Education as an Emerging Issue in Online Education, TTAICTE. 2022 July; 1(3): 19-24. Published online 2022 July, doi.org/10.36647/TTAICTE/01.03.A004
- [54] Hayath T M., Dr. Shashi Kant Gupta, Pedagogical Principles in Learning and Its Impact on Enhancing Motivation of Students, TTAICTE. 2022 October; 1(2): 19-24. Published online 2022 July, doi.org/10.36647/TTAICTE/01.04.A004

- [55] Shaily Malik, Dr. Shashi Kant Gupta, "The Importance of Text Mining for Services Management", TTIDMKD. 2022 November; 2(4): 28-33. Published online 2022 November doi.org/10.36647/TTIDMKD/02.04.A006
- [56] Dr. Shashi Kant Gupta, Shaily Malik, "Application of Predictive Analytics in Agriculture", TTIDMKD. 2022 November; 2(4): 1-5. Published online 2022 November doi.org/10.36647/TTIDMKD/02.04.A001
- [57] Dr. Shashi Kant Gupta, Budi Artono, "Bioengineering in the Development of Artificial Hips, Knees, and other joints. Ultrasound, MRI, and other Medical Imaging Techniques", TTIRAS. 2022 June; 2(2): 10–15. Published online 2022 June doi.org/10.36647/TTIRAS/02.02.A002
- [58] Dr. Shashi Kant Gupta, Dr. A. S. A. Ferdous Alam, "Concept of E Business Standardization and its Overall Process" TJAEE 2022 August; 1(3): 1–8. Published online 2022 August
- [59] Alkhader, W., Salah, K., Sleptchenko, A., et al. (2021). Blockchain-based decentralized digital manufacturing and supply for COVID-19 medical devices and supplies. *IEEE Access*, 9, 137923–137940. <u>IJRITCC</u>
- [60] Cui, P., Dixon, J., Guin, U., & Dimase, D. (2019). A blockchain-based framework for supply chain provenance. *IEEE Access*, 7, 157113–157125. *IJRITCC*
- [61] Benčić, F. M., Skočić, P., & Podnar Žarko, I. (2019). DL-Tags: DLT and smart tags for decentralized, privacy-preserving, verifiable supply chain management. *IEEE Access*, 7, 46198–46209. IJRITCC
- [62] Mishra, Manu Vallabh. "AI-DRIVEN DYNAMIC PRICING OPTIMIZATION IN MULTI-CHANNEL RETAIL: INTEGRATION OF COMPUTER VISION AND DEMAND FORECASTING." International Research Journal of Modernization in Engineering Technology and Science, 2025.
- [63] A. Kishore Kumar, A. Alemran, D. A. Karras, S. Kant Gupta, C. Kumar Dixit and B. Haralayya, "An Enhanced Genetic Algorithm for Solving Trajectory Planning of Autonomous Robots," 2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS), Raichur, India, 2023, pp. 1-6, doi: 10.1109/ICICACS57338.2023.10099994
- [64] S. K. Gupta, V. S. Kumar, A. Khang, B. Hazela, N. T and B. Haralayya, "Detection of Lung Tumor using an efficient Quadratic Discriminant Analysis Model," 2023 International Conference on Recent Trends in Electronics and Communication (ICRTEC), Mysore, India, 2023, pp. 1-6, doi: 10.1109/ICRTEC56977.2023.10111903.
- [65] S. K. Gupta, A. Alemran, P. Singh, A. Khang, C. K. Dixit and B. Haralayya, "Image Segmentation on Gabor Filtered images using Projective Transformation," 2023 International

Page | 337

- Conference on Recent Trends in Electronics and Communication (ICRTEC), Mysore, India, 2023, pp. 1-6, doi: 10.1109/ICRTEC56977.2023.10111885.
- [66] S. K. Gupta, S. Saxena, A. Khang, B. Hazela, C. K. Dixit and B. Haralayya, "Detection of Number Plate in Vehicles using Deep Learning based Image Labeler Model," 2023 International Conference on Recent Trends in Electronics and Communication (ICRTEC), Mysore, India, 2023, pp. 1-6, doi: 10.1109/ICRTEC56977.2023.10111862.
- [67] S. K. Gupta, W. Ahmad, D. A. Karras, A. Khang, C. K. Dixit and B. Haralayya, "Solving Roulette Wheel Selection Method using Swarm Intelligence for Trajectory Planning of Intelligent Systems," 2023 International Conference on Recent Trends in Electronics and Communication (ICRTEC), Mysore, India, 2023, pp. 1-5, doi: 10.1109/ICRTEC56977.2023.10111861.
- [68] Shashi Kant Gupta, Olena Hrybiuk, NL Sowjanya Cherukupalli, Arvind Kumar Shukla (2023). Big Data Analytics Tools, Challenges and Its Applications (1st Ed.), CRC Press. ISBN 9781032451114
- [69] Shobhna Jeet, Shashi Kant Gupta, Olena Hrybiuk, Nupur Soni (2023). Detection of Cyber Attacks in IoT-based Smart Cities using Integrated Chain Based Multi-Class Support Vector Machine (1st Ed.), CRC Press. ISBN 9781032451114
- [70] Parin Somani, Shashi Kant Gupta, Chandra Kumar Dixit, Anchal Pathak (2023). AI-based Competency Model and Design in the Workforce Development System (1st Ed.), CRC Press. https://doi.org/10.1201/9781003357070-4
- [71] Shashi Kant Gupta, Alex Khang, Parin Somani, Chandra Kumar Dixit, Anchal Pathak (2023).
 Data Mining Processes and Decision-Making Models in Personnel Management System (1st Ed.), CRC Press. https://doi.org/10.1201/9781003357070-6
- [72] Alex Khang, Shashi Kant Gupta, Chandra Kumar Dixit, Parin Somani (2023). Data-driven Application of Human Capital Management Databases, Big Data, and Data Mining (1st Ed.), CRC Press. https://doi.org/10.1201/9781003357070-7
- [73] Alkhader, W., Salah, K., Sleptchenko, A., et al. (2021). Blockchain-based decentralized digital manufacturing and supply for COVID-19 medical devices and supplies. *IEEE Access*, *9*, 137923–137940. <u>IJRITCC</u>
- [74] Cui, P., Dixon, J., Guin, U., & Dimase, D. (2019). A blockchain-based framework for supply chain provenance. *IEEE Access*, 7, 157113–157125.IJRITCC
- [75] Benčić, F. M., Skočić, P., & Podnar Žarko, I. (2019). DL-Tags: DLT and smart tags for decentralized, privacy-preserving, verifiable supply chain management. *IEEE Access*, 7, 46198–46209. <u>IJRITCC</u>

- [76] Jangirala, S., Das, A. K., & Vasilakos, A. V. (2019). Designing secure lightweight blockchain-enabled RFID-based authentication protocol for supply chains in 5G mobile edge computing environment. *IEEE Transactions on Industrial Informatics*, 16(11), 7081–7093. <u>JJRITCC</u>
- [77] Azizi, N., Malekzadeh, H., Akhavan, P., Haass, O., Saremi, S., & Mirjalili, S. (2021). IoT–Blockchain: Harnessing the power of Internet of Thing and Blockchain for smart supply chain. *Sensors*, *21*(18), 6048. <u>IJRITCC</u>
- [78] Kaur, A., Singh, G., Kukreja, V., Sharma, S., Singh, S., & Yoon, B. (2022).
 Adaptation of IoT with blockchain in food supply chain management: Analysis-based review in development, benefits and potential applications. *Sensors*, 22(21), 8174.mdpi.com
- [79] Gondal, M. U. A., Khan, M. A., Albarakati, H. M., & Shabaz, M. (2023). A secure food supply chain solution: Blockchain and IoT-enabled container to enhance the efficiency of shipment for strawberry supply chain. *Frontiers in Sustainable Food Systems*.frontiersin.org
- [80] Wamba, S. F., Queiroz, M. M., De Bourmont, M., & Telles, R. (2023). Enablers to the adoption of blockchain technology in logistics supply chains: Evidence from an emerging economy. *Annals of Operations Research*.en.wikipedia.org
- [81] Chandra Kumar Dixit, Parin Somani, Shashi Kant Gupta, Anchal Pathak (2023). Data-centric Predictive Modelling of Turnover Rate and New Hire in Workforce Management System (1st Ed.), CRC Press. https://doi.org/10.1201/9781003357070-8
- [82] Anchal Pathak, Chandra Kumar Dixit, Parin Somani, Shashi Kant Gupta (2023). Prediction of Employee's Performance Using Machine Learning (ML) Techniques (1st Ed.), CRC Press. https://doi.org/10.1201/9781003357070-11
- [83] Worakamol Wisetsri, Varinder Kumar, Shashi Kant Gupta, "Managerial Autonomy and Relationship Influence on Service Quality and Human Resource Performance", Turkish Journal of Physiotherapy and Rehabilitation, Vol. 32, pp2, 2021.
- [84] Shashi Kant Gupta, Radha Raman Chandan, Rupesh Shukla, Prabhdeep Singh, Ashish Kumar Pandey, Amit Kumar Jaiswal, "Heterogeneity issues in IoT-driven devices and services", Journal of Autonomous Intelligence, Vol. 6, (2), pp13, 2023. http://dx.doi.org/10.32629/jai.v6i2.588
- [85] Rishabh Sharma, Shashi Kant Gupta, Yasmin Makki Mohialden, Priyanka Bhatewara Jain, Prabhishek Singh, Manoj Diwakar, Shiv Dayal Pandey, Sarvesh Kumar; A review of weather

- forecasting using LSTM model. *AIP Conf. Proc.* 1 September 2023; 2771 (1): 020013. https://doi.org/10.1063/5.0152493
- [86] H. L. Gururaj, R. Natarajan, N. A. Almujally, F. Flammini, S. Krishna and S. K. Gupta, "Collaborative Energy-Efficient Routing Protocol for Sustainable Communication in 5G/6G Wireless Sensor Networks," in IEEE Open Journal of the Communications Society, vol. 4, pp. 2050-2061, 2023, doi: 10.1109/OJCOMS.2023.3312155.
- [87] Gupta, S. K., Mehta, S., Tripathi, R. K., & Siddiqui, S. A. (2024). Optimization of Processing Sequence and Computation Mode in IoT for Mobile Edge Computing: A Comprehensive Analysis. In S. Mehta, A. Abougreen, & S. Gupta (Eds.), Emerging Materials, Technologies, and Solutions for Energy Harvesting (pp. 16-32). IGI Global. https://doi.org/10.4018/979-8-3693-2003-7.ch002
- [88] Gupta, S. K., Mehta, S., Abougreen, A. N., & Singh, P. (2024). Antenna Identification and Power Allocation in Multicell Massive MIMO Downstream: Energy Conservation Under User Sum-Rate Constraint. In S. Mehta, A. Abougreen, & S. Gupta (Eds.), Emerging Materials, Technologies, and Solutions for Energy Harvesting (pp. 1-15). IGI Global. https://doi.org/10.4018/979-8-3693-2003-7.ch001
- [89] Mehta, S., Abougreen, A. N., & Gupta, S. K. (Eds.). (2024). Emerging Materials, Technologies, and Solutions for Energy Harvesting. IGI Global. https://doi.org/10.4018/979-8-3693-2003-7
- [90] Rupesh Shukla, Anish Kumar Choudhary, V. Suresh Kumar, Priyanka Tyagi, A. Mutharasan, Sumita Kumar, Shashi Kant Gupta, "Understanding integration issues in intelligent transportation systems with IoT platforms, cloud computing, and connected vehicles", Journal of Autonomous Intelligence, Vol. 7, (4), pp13, 2024. https://doi.org/10.32629/jai.v7i4.1043
- [91] Queiroz, M. M., & Wamba, S. F. (2021). Blockchain adoption challenges in supply chain: An empirical investigation in India and the USA. *International Journal of Information Management*.en.wikipedia.org
- [92] Shashi Kant Gupta, Christodoss Prasanna Ranjith, Rajesh Natarajan, M. Syed Khaja Mohideen (2024). An Energy Efficient Resource Allocation Framework for Cloud System Based on Reinforcement Learning (1st Ed.), CRC Press. https://doi.org/10.1201/9781032708348-50
- [93] Shashi Kant Gupta, Rajesh Natarajan, Ashish Kumar Pandey, Prabhdeep Singh (2024). Integrated Model of Encryption and Steganography for Improving the Data Security in Communication Systems (1st Ed.), CRC Press. https://doi.org/10.1201/9781032708348-51

- [94] Shashi Kant Gupta, Ahmed Alemran, Christodoss Prasanna Ranjith, M. Syed Khaja Mohideen (2024). Reliable Fingerprint Classification Based on Novel Deep Learning Approach (1st Ed.), CRC Press. https://doi.org/10.1201/9781032708348-54
- [95] Alex Khang, Sunil Kumar Vohra, Shashi Kant Gupta, Bhuvanesh Kumar Sharma (2024).
 Artificial Intelligence-Based Food Supply Chain Management During the Covid-19 Pandemic (1st Ed.), CRC Press. https://doi.org/10.1201/9781032708348-56
- [96] Paryati et al. (2024). Patient Health Services for Early Detection Therapy of Diabetes Mellitus with Expert System and IOT. In: Gupta, S.K., Karras, D.A., Natarajan, R. (eds) Revolutionizing Healthcare: AI Integration with IoT for Enhanced Patient Outcomes. Information Systems Engineering and Management, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-031-65022-2
- [97] Gupta, S.K., Karras, D.A., Natarajan, R. (eds) Revolutionizing Healthcare: AI Integration with IoT for Enhanced Patient Outcomes. Information Systems Engineering and Management, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-031-65022-2
- [98] Mudassar Sayyed, Babasaheb Ramdas Jadhav, Vikram Barnabas, Shashi Kant Gupta. Source Title: Impact and Potential of Machine Learning in the Metaverse, Book chapter title: Human-Machine Interaction in the Metaverse: A Comprehensive Review and Proposed Framework, Copyright: © 2024 |Pages: 28, DOI: 10.4018/979-8-3693-5762-0.ch001
- [99] Babasaheb Jadhav, Ashish Kilkarni, Pooja Kulkarni, Shashi Kant Gupta. Source Title: Impact and Potential of Machine Learning in the Metaverse, Book chapter title: Generative AI: Unleashing Personalized Content in the Metaverse, Copyright: © 2024 |Pages: 18, DOI: 10.4018/979-8-3693-5762-0.ch002
- [100] Mehta, S., Gupta, S. K., Aljohani, A. A., Khayyat, M. (Eds.). (2024). Impact and Potential of Machine Learning in the Metaverse. IGI Global. https://doi.org/10.4018/979-8-3693-5762-0
- [101] Hrybiuk, O., Kant, G.S. (2024). CleverCOMSRL: Implementation of an AI Computer-Aided Design System in the Context of the Cognitive Science Paradigm for the Research Training Process. In: Machado, J., et al. Innovations in Mechatronics Engineering III. icieng 2024. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-61575-7 32
- [102] Gupta, S.K., Pathak, A., Sultanuddin, S.J., Soni, N. "Reciprocated Bayesian-Rnn classifier-based mode switching and mobility management in mobile networks", Machine Learning for Mobile Communications, 2024, pp. 116–132. https://doi.org/10.1201/9781003306290-9
- [103] Garg, S., Gupta, S.K., Anbu, A.D., Pathak, A. "Introduction to 5G new radio", Machine Learning for Mobile Communications, 2024, pp. 1–14. https://doi.org/10.1201/9781003306290-1

- [104] Gupta, S.K., Rosak-Szyrocka, J. "Innovative practices of educational system based on machine learning techniques and IT proficiency framework", Innovation in the University 4.0 System based on Smart Technologies, 2024, pp. 1–22. https://doi.org/10.1201/9781003425809-1
- [105] Gupta, S.K., Rosak-Szyrocka, J. "Innovation in the university 4.0 system based on smart technologies", Innovation in the University 4.0 System based on Smart Technologies, 2024, pp. 1–230. https://doi.org/10.1201/9781003425809
- [106] Mohamed Abouhawwash, Joanna Rosak-Szyrocka, Shashi Kant Gupta. "Aspects of Quality Management in Value Creating in the Industry 5.0 Way", Edition 1st Edition, First Published 2024, Pages 242, eBook ISBN 9781032677040, eBook Published 1 October 2024, Pub. Location Boca Raton, Imprint CRC Press. DOI https://doi.org/10.1201/9781032677040
- [107] Joanna Rosak-Szyrocka, Shashi Kant Gupta, Flavio Boccia. "New role of value for customer 5.0 in augmented era", Book: Aspects of Quality Management in Value Creating in the Industry 5.0 Way, Pages 20, eBook ISBN 9781032677040, Edition 1st Edition, First Published 2024, Imprint CRC Press. https://doi.org/10.1201/9781032677040-1
- [108] Shashi Kant Gupta, Joanna Rosak-Szyrocka, V. Suresh Kumar, Gilbert C. Magulod. "Ecustomer safety in digital environment from the seller's and the buyer's perspectives", Book: Aspects of Quality Management in Value Creating in the Industry 5.0 Way, Pages 10, eBook ISBN 9781032677040, Edition 1st Edition, First Published 2024, Imprint CRC Press. https://doi.org/10.1201/9781032677040-6
- [109] Shashi Kant Gupta, Joanna Rosak-Szyrocka, Chandra Kumar Dixit, Shovona Choudhury, Julee Banerji. "Deploying new IT tools in Industry 5.0 in the creative direction", Book: Aspects of Quality Management in Value Creating in the Industry 5.0 Way, Pages 9, eBook ISBN 9781032677040, Edition 1st Edition, First Published 2024, Imprint CRC Press. https://doi.org/10.1201/9781032677040-9
- [110] Shashi Kant Gupta, S. Sri Nandhini Kowsalya, K Sathiyasekar, Rajesh Natarajan. "Agricultural Data Analysis Using Data Mining Techniques for Yield Prediction", Book: Advancements in Science and Technology for Healthcare, Agriculture, and Environmental Sustainability, Edition 1st Edition, First Published 2024, Imprint CRC Press, Pages 7, eBook ISBN 9781032708348. https://doi.org/10.1201/9781032708348-52
- [111] Shashi Kant Gupta, Bhadrappa Haralayya, Vikas Kumar, Iskandar Muda. "Prediction of Customer Default in E-commerce based on Spider Monkey Optimized Scalar Random Forest Algorithm", Book: Advancements in Business for Integrating Diversity, and Sustainability, Edition 1st Edition, First Published 2024, Imprint Routledge, Pages 6, eBook ISBN 9781032708294. https://doi.org/10.4324/9781032708294-11

- [112] Alex Khang, Sunil Kumar Vohra, Shashi Kant Gupta, Bhuvanesh Kumar Sharma. "Artificial Intelligence-Based Food Supply Chain Management During the Covid-19 Pandemic", Book: Advancements in Science and Technology for Healthcare, Agriculture, and Environmental Sustainability, Edition 1st Edition, First Published 2024, Imprint CRC Press, Pages 7, eBook ISBN 9781032708348. https://doi.org/10.1201/9781032708348-56
- [113] Sugandha Agarwal, Mahesh Singh, Sunil Kumar Vohra, Shashi Kant Gupta. "Research on the Effect of Talent Management on Employee Attrition and Retention Intentions", Book: Advancements in Business for Integrating Diversity, and Sustainability, Edition 1st Edition, First Published 2024, Imprint Routledge, Pages 6, eBook ISBN 9781032708294. https://doi.org/10.4324/9781032708294-43
- [114] Arvind Kumar Shukla, S. Poongodi, Alex Khang, Shashi Kant Gupta. "Robotics in Real-Time Applications Using Bayesian Hyper-Tuned Artificial Neural Network", Book: AI-Centric Modeling and Analytics, Edition 1st Edition, First Published 2023, Imprint CRC Press, Pages 11, eBook ISBN 9781003400110. https://doi.org/10.1201/9781003400110-10
- [115] Shashi Kant Gupta, Sunil Kumar Vohra, Olena Hrybiuk, Arvind Kumar Shukla. "Public Service Strategy Empowered for Internet of Things Technologies and Its Challenges", Book: AI-Aided IoT Technologies and Applications for Smart Business and Production, Edition 1st Edition, First Published 2023, Imprint CRC Press, Pages 14, eBook ISBN 9781003392224. https://doi.org/10.1201/9781003392224-19
- [116] Alex Khang, Anuradha Misra, Shashi Kant Gupta, Vrushank Shah. Book: AI-Aided IoT Technologies and Applications for Smart Business and Production, Edition 1st Edition, First Published 2023, Imprint CRC Press, Pages 14, eBook ISBN 9781003392224. https://doi.org/10.1201/9781003392224
- [117] Alex Khang, Shashi Kant Gupta. "Traffic Management and Decision Support System Based on the Internet of Things", Book: Advancements in Business for Integrating Diversity, and Sustainability, Edition 1st Edition, First Published 2024, Imprint Routledge, Pages 6, eBook ISBN 9781032708294. https://doi.org/10.4324/9781032708294-36
- [118] Shashi Kant Gupta, Rajesh Natarajan, Ashish Kumar Pandey, Prabhdeep Singh. "Integrated Model of Encryption and Steganography for Improving the Data Security in Communication Systems", Book: Advancements in Science and Technology for Healthcare, Agriculture, and Environmental Sustainability, Edition 1st Edition, First Published 2024, Imprint CRC Press, Pages 7, eBook ISBN 9781032708348. https://doi.org/10.1201/9781032708348-51
- [119] Shashi Kant Gupta, Ahmed Alemran, Christodoss Prasanna Ranjith, M. Syed Khaja Mohideen. "Biometric Authentication for Healthcare Data Security in Cloud Computing—A Machine Learning Approach", Book: Advancements in Science and Technology for Healthcare, Agriculture, and Environmental Sustainability, Edition 1st Edition, First Published 2024,

- Imprint CRC Press, Pages 7, eBook ISBN 9781032708348. https://doi.org/10.1201/9781032708348-49
- [120] Shashi Kant Gupta, Ahmed Alemran, Christodoss Prasanna Ranjith, M. Syed Khaja Mohideen. "Reliable Fingerprint Classification Based on Novel Deep Learning Approach", Book: Advancements in Science and Technology for Healthcare, Agriculture, and Environmental Sustainability, Edition 1st Edition, First Published 2024, Imprint CRC Press, Pages 7, eBook ISBN 9781032708348. https://doi.org/10.1201/9781032708348-54
- [121] Davron Aslonqulovich Juraev, Nazira MohubbatMammadzada, Juan Diaz Bulnes, Shashi Kant Gupta, Gulsum Allahyar Aghayeva, Vagif Rza Ibrahimov, "Regularization of the Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain", "Mathematics and Systems Science", Article ID: 2895, Vol 2, Issue 2, 2024. DOI: https://doi.org/10.54517/mss.v2i2.2895
- [122] Suresh Kumar, V., Ibrahim Khalaf, O., Raman Chandan, R. et al. Implementation of a novel secured authentication protocol for cyber security applications. Sci Rep 14, 25708 (2024). https://doi.org/10.1038/s41598-024-76306-z
- [123] Gupta, S. K. (2024). An Effective Opinion Mining-Based K-Nearest Neighbours Algorithm for Predicting Human Resource Demand in Business. Artificial Intelligence and Applications. https://doi.org/10.47852/bonviewAIA42022379
- [124] Shashi Kant Gupta, Joanna Rosak-Szyrocka, Amit Mittal, Sanjay Kumar Singh, Olena Hrybiuk, "Blockchain-Enabled Internet of Things Applications in Healthcare: Current Practices and Future Directions ", Bentham Science Publishers (2025). https://doi.org/10.2174/97898153052101250101
- [125] Babasaheb Jadhav, Mudassar Sayyed, Shashi Kant Gupta; Intelligent IoT Healthcare Applications Powered by Blockchain Technology, Blockchain-Enabled Internet of Things Applications in Healthcare: Current Practices and Future Directions (2025) 1: 1. https://doi.org/10.2174/9789815305210125010004
- [126] J. Mangaiyarkkarasi, J. Shanthalakshmi Revathy, Shashi Kant Gupta, Shilpa Mehta; Blockchain-Powered IoT Innovations in Healthcare, Blockchain-Enabled Internet of Things Applications in Healthcare: Current Practices and Future Directions (2025) 1: 23. https://doi.org/10.2174/9789815305210125010005
- [127] Rahul Joshi, Shashi Kant Gupta, Rajesh Natarajan, Krishna Pandey, Suman Kumari; Blockchain-Powered Monitoring of Healthcare Credentials through Blockchain-Based Technology, Blockchain-Enabled Internet of Things Applications in Healthcare: Current Practices and Future Directions (2025) 1: 170. https://doi.org/10.2174/9789815305210125010011

- [128] P. Deepan, R. Vidy, N. Arul, S. Dhiravidaselvi, Shashi Kant Gupta; Revolutionizing Hen Care in Smart Poultry Farming: The Impact of AI-Driven Sensors on Optimizing Avian Health, Blockchain-Enabled Internet of Things Applications in Healthcare: Current Practices and Future Directions (2025) 1: 200. https://doi.org/10.2174/9789815305210125010012
- [129] Pathak, A., Anbu, A.D., Jamil, A.B.A. et al. Evaluation of energy consumption data for business consumers. Environ Dev Sustain (2025). https://doi.org/10.1007/s10668-024-05960-0
- [130] Manjushree Nayak, Asish Panigrahi, Ashish Kumar Dass, Brojo Kishore Mishra, Shashi Kant Gupta. "Blockchain in Industry 4.0 and Industry 5.0, A Paradigm Shift towards Decentralized Efficiency and Autonomous Ecosystems", Book: Computational Intelligence in Industry 4.0 and 5.0 Applications, Edition 1st Edition, First Published 2025, Imprint Auerbach Publications, Pages 36, eBook ISBN 9781003581963; DOI: https://doi.org/10.1201/9781003581963-7