Volume 01 | Issue 04 | September 2025 ISSN: 3049-303X (Online)

Website: www.thechitranshacadmic.in

NANOFLUIDS: THERMOPHYSICAL PROPERTIES, SYNTHESIS, STABILITY, AND APPLICATIONS

¹Ms. Pooja Goyal*, ²Dr. Deepti Chauhan, ³Dr. Seema Bansal, ⁴Dr. Sumita Shekhawat ¹Student, ²Assistant Professor, ³Associate Professor, ⁴Assistant Professor ¹Research Scholar, Department of Physics, Kanoria PG Mahila Mahavidyalaya, Jaipur, Rajasthan, India

^{2,4}Faculty of Physics, Department of Physics, Kanoria PG Mahila Mahavidyalaya, Jaipur, Rajasthan, India

³Faculty of Physics, Department of Physics, Jaipur Engineering College and Research Centre, Jaipur, Rajasthan, India

ARTICLEDETAILS

ABSTRACT

Research Paper

Received: 30/08/2025

Accepted: 10/09/2025

Published: 30/09/2025

nanofluids, Machine learning,

Nanoparticles, Stability, Thermal

conductivity

Nanofluids—suspensions of nanoparticles in base fluids—have emerged as potential advanced heat transfer fluids due to their superior thermophysical properties. This paper reviews the latest developments in nanofluid synthesis, stability strategies, and enhancements in Keywords: Heat transfer, Hybrid thermal conductivity, viscosity, and heat capacity. It also covers various models to predict these properties and explores the growing applications in cooling systems, energy storage, electronics, and solar thermal collectors. Recent advancements in hybrid nanofluids and machine learning-based modeling are highlighted. The review concludes with future research directions and industrial adoption challenges.

DOI: https://doi.org/10.5281/zenodo.17210916

1.INTRODUCTION

Nanofluids are engineered colloidal suspensions of nanometer-sized particles—typically less than 100 nm—in base fluids such as water, ethylene glycol, or oils. The concept was pioneered by Choi (1995), and since then, nanofluids have attracted immense research interest due to their superior heat transfer capabilities, which are critical for modern thermal management systems in applications ranging from electronics to renewable energy systems. Unlike conventional fluids, nanofluids demonstrate significantly improved thermal conductivity and convective heat transfer due to mechanisms like Brownian motion, nanoparticle—fluid interaction, and formation of nanolayers at particle interfaces (Murshed, Leong, & Yang, 2005; Hwang et al., 2007).

Nanofluids address the limitations of traditional heat transfer fluids by providing tunable thermophysical properties through nanoparticle shape, size, volume fraction, and surface treatment. Despite their advantages, challenges such as particle agglomeration, stability, and pumping power requirements remain. This paper provides a comprehensive theoretical review of nanofluids, focusing on their synthesis techniques, thermophysical properties, and applications, while highlighting key theoretical models and recent research findings. It also addresses the progress in hybrid nanofluids, modeling approaches using machine learning, and future directions for industrial adoption.

2. Materials and Methods

2.1 Preparation and Synthesis Methods

The synthesis of nanofluids plays a crucial role in determining their stability, uniform dispersion, and thermophysical properties. Broadly, synthesis techniques are categorized into two main approaches: the one-step method and the two-step method.

In the two-step method, nanoparticles are first synthesized independently using physical or chemical techniques such as sol–gel processing, ball milling, or chemical vapor deposition. These nanoparticles are then dispersed into the base fluid using ultrasonication or mechanical stirring (Xie, Wang, & Xi, 2006). While cost-effective and suitable for large-scale production, this method often suffers from issues related to nanoparticle agglomeration and sedimentation due to weak particle–fluid interaction.

Conversely, the one-step method involves simultaneous synthesis and dispersion of nanoparticles in the base fluid. This approach minimizes particle agglomeration by avoiding drying and storage

steps. Popular techniques include the submerged arc method, laser ablation, and chemical precipitation (Naphon&Thongkum, 2018; Kole & Dey, 2010). Although this method produces stable nanofluids with better dispersion, it is generally more expensive and less scalable.

To enhance stability, surfactants such as CTAB, SDS, or PVP are added to modify surface energy and prevent aggregation. However, excessive surfactant use can affect thermal conductivity and increase viscosity (Yu & Xie, 2012). Alternatively, surface functionalization—chemical modification of nanoparticle surfaces with functional groups—improves compatibility with polar or non-polar base fluids.

Another important practice is ultrasonication, where high-frequency acoustic waves break down nanoparticle clusters. The duration and amplitude of sonication are critical parameters for achieving optimal dispersion (Hemmat Esfe et al., 2016). In some cases, pH adjustment is used to modify the zeta potential of nanoparticles, reducing interparticle forces and enhancing colloidal stability.

In summary, the synthesis method significantly influences nanofluid performance. Selecting an appropriate preparation strategy requires balancing cost, scalability, stability, and desired thermophysical properties.

Applications:

Nanofluids, owing to their enhanced thermal conductivity, heat transfer coefficient, and stability, have found applications across multiple industries. Some key areas include:

Electronics Cooling

Used in high-performance computing devices, microprocessors, and microchips. They
enhance heat dissipation in compact systems where conventional coolants are inefficient
(Nguyen et al., 2007).

Automotive Industry

Applied in engine cooling systems, radiators, and exhaust gas recirculation systems. Nanofluids improve fuel efficiency and prevent overheating by enhancing thermal management (Kole & Dey, 2010).

Solar Energy Systems

■ In solar thermal collectors, nanofluids improve solar energy absorption and heat transfer, increasing the efficiency of photovoltaic/thermal hybrid systems (Heris, Esfahany, & Etemad, 2007).

Biomedical Applications

● Used in cancer therapy (hyperthermia treatment), where nanoparticles are targeted to tumor cells and heated using magnetic or optical fields. Nanofluids are also explored in drug delivery, imaging, and biosensors (Saidur, Leong, & Mohammed, 2011).

Nuclear Reactors

• Nanofluids are studied for cooling in nuclear reactor cores and spent fuel storage systems, improving heat removal efficiency and safety margins (Lee &Mudawar, 2007).

RESULT

4.1 Thermal Conductivity

One of the most widely studied properties of nanofluids is thermal conductivity, as it directly affects heat transfer performance in practical applications. Numerous experimental studies have demonstrated that nanofluids possess enhanced thermal conductivity compared to their base fluids (Das, Choi, & Patel, 2006). The enhancement depends on several factors including nanoparticle material, size, shape, volume fraction, temperature, and dispersion quality.

Multiple mechanisms contribute to the thermal conductivity enhancement in nanofluids:

- Brownian Motion: The random movement of nanoparticles can induce microconvection, enhancing energy transport within the fluid (Murshed, Leong, & Yang, 2008).
- Nanoparticle Material and Size: Smaller nanoparticles offer a higher surface area-to-volume ratio and more effective phonon transport. High conductivity materials like copper, silver, and graphene oxide are known to produce significant enhancements (Minea, 2016).
- Formation of Nanolayers: A dense liquid layer forms around nanoparticles, acting as a thermal bridge between particles and fluid molecules (Krishna et al., 2020).

● **Aggregation and Percolation Effects:** At higher volume fractions, nanoparticles may form clusters or networks that create conductive paths.

Theoretical models for predicting the thermal conductivity of nanofluids include the Maxwell Model (Zyla & Nowak, 2015), the Hamilton–Crosser Model (Wang, Xu, & Choi, 1999), and effective medium and interfacial layer models (Eastman et al., 2001).

4.2 Viscosity

The viscosity of nanofluids is a critical parameter influencing both heat transfer efficiency and pumping power requirements. While thermal conductivity enhancement is desirable, a significant increase in viscosity can offset the benefits by increasing flow resistance and energy consumption.

Viscosity in nanofluids is influenced by several factors:

- Nanoparticle Concentration: Higher volume fractions generally lead to increased viscosity due to stronger particle—particle interactions (Xuan & Li, 2000).
- Particle Size and Shape: Smaller particles with high surface area contribute more to viscosity enhancement. Elongated or plate-like particles such as carbon nanotubes tend to increase viscosity more than spherical particles (Li & Peterson, 2009).
- Base Fluid Properties: The nature of the base fluid significantly affects the overall viscosity.
- **Temperature:** Viscosity decreases with increasing temperature, but the rate of decrease depends on nanoparticle type and interactions (Saidur, Leong, & Mohammed, 2011).
- Surfactants and pH: Proper dispersion can reduce agglomeration and control viscosity, though excessive surfactant may increase flow resistance.

Theoretical and empirical models include:

- Einstein's Model: Valid for low particle concentrations and spherical particles with no interactions (Tiwari et al., 2020).
- **Brinkman and Batchelor Models:** Extend Einstein's theory to include particle interactions at higher concentrations (Wen & Ding, 2005).
- Modified Krieger–Dougherty Model: Considers maximum packing fraction and is widely used in experimental data fitting (Minea & Mihaela, 2017).

Maintaining an optimal balance between thermal conductivity and viscosity increase is a key design consideration in nanofluid applications.

4.3 Density, Specific Heat, Surface Tension

While thermal conductivity and viscosity dominate nanofluid research, other thermophysical properties such as density, specific heat, and surface tension also play crucial roles in determining the performance of nanofluids in thermal systems.

Density

Nanofluid density is higher than that of the base fluid due to the presence of high-density nanoparticles. It can be estimated as:

$$\rho_{nf} = (1 - \varphi)\rho_f + \varphi\rho_p \tag{1}$$

This model assumes perfect dispersion without agglomeration or sedimentation, which is not always true in practical systems. However, experimental results often confirm its accuracy for dilute nanofluids (Putra et al., 2003).

Specific Heat Capacity

The specific heat of nanofluids tends to decrease with increasing nanoparticle concentration since most nanoparticles (e.g., metals, metal oxides) have lower specific heat than base fluids. The effective specific heat can be approximated by:

$$(c_p)_{nf} = \frac{(1-\varphi)(\rho c_p)_f + \varphi(\rho c_p)_p}{\rho_{nf}}$$
 (2)

This reduction can affect the nanofluid's energy storage capacity (Nguyen et al., 2007).

Surface Tension

Nanoparticles can alter surface tension depending on their size, type, and interaction with the base fluid. Some studies show metal oxide nanoparticles slightly increase surface tension, while surfactant-stabilized nanofluids may reduce it (Heris, Esfahany, & Etemad, 2007). Despite its significance in phase change applications, surface tension of nanofluids has not been as extensively studied as other properties. Recent work is focused on understanding how surfactant concentration, pH, and temperature interact with nanoparticle behavior to influence this parameter.

4.4 Stability

Stability refers to the ability of nanoparticles to remain uniformly dispersed in base fluids over time without agglomerating. Instability can lead to sedimentation, clogging, and inconsistent thermophysical properties (Das, Chatterjee, & Das, 2016).

Several factors influence stability:

- Interparticle Forces: Attractive van der Waals forces promote agglomeration unless countered by repulsive forces (Pak & Cho, 1998).
- **Zeta Potential and pH:** A high zeta potential improves electrostatic stability, which can be tuned via pH adjustment (Fotukian& Nasr Esfahany, 2010).
- Surfactants and Dispersants: Surfactants such as SDS, CTAB, and PVP are widely used, though excessive use may impact viscosity (Ghadimi, Saidur, &Metselaar, 2011)

5. Discussion

Modeling the thermophysical behavior of nanofluids is essential for designing energy-efficient systems and reducing the dependence on costly and time-consuming experiments. Over the years, both classical theoretical models and modern data-driven approaches have been employed to predict the thermal conductivity, viscosity, and other properties of nanofluids.

5.1 Classical Theoretical Models

These models are typically derived based on effective medium theory, continuum mechanics, and statistical mechanics. Key examples include:

Maxwell Model (1904):

This model assumes spherical particles suspended in a stationary fluid. While it provides a good baseline, it fails to capture nanoscale effects such as particle interaction, Brownian motion, or surface layering (Zyla & Nowak, 2015).

$$k_{eff} = \frac{2k_f + k_p + 2\varphi(k_p - k_f)}{2k_f + k_p - \varphi(k_p - k_f)} k_f(3)$$

Hamilton-Crosser Model:

This model extends Maxwell's theory to non-spherical particles using a shape factor. It is more accurate for materials like nanotubes or platelets (Wang, Xu, & Choi, 1999).

$$k_{eff} = k_f \left[\frac{k_p + (n-1)k_f - (n-1)\varphi(k_p - k_f)}{k_p + (n-1)k_f - \varphi(k_p - k_f)} \right] (4)$$

Brinkman and Batchelor Models:

These are used for viscosity prediction and include particle—particle interactions at higher volume fractions (Wen & Ding, 2005).

Interfacial Layer and EMT Models:

These account for the existence of nanolayers formed around nanoparticles, contributing to increased thermal conductivity (Eastman, Choi, Li, Yu, & Thompson, 2001).

Despite their usefulness, these models often lack generality and accuracy when applied to nanofluids with different particle shapes, sizes, and surfactants.

5.2 Molecular Dynamics (MD) Simulations

MD simulations provide atomistic insight into the interactions between nanoparticles and fluid molecules. They can model heat transfer mechanisms at the nanoscale, including the role of nanolayers, phonon scattering, and interfacial thermal resistance (Das, Chatterjee, & Das, 2016). Although computationally expensive, MD has significantly advanced the theoretical understanding of nanofluid behavior.

5.3 Machine Learning Approaches

Recent developments have seen machine learning (ML) and artificial intelligence (AI) being applied to nanofluid modeling. These methods can process large experimental datasets and generate accurate predictions of thermophysical properties under varied conditions.

- Regression Algorithms: Linear regression, support vector machines (SVM), and decision trees have been used to predict viscosity and thermal conductivity based on inputs like particle size, volume fraction, and temperature (Buongiorno, 2006).
- Artificial Neural Networks (ANN): ANNs are particularly effective in capturing nonlinear dependencies between input variables and fluid behavior. They outperform

traditional models in complex systems involving hybrid nanofluids or variable temperature regimes (Ghadimi, Saidur, &Metselaar, 2011).

● **Hybrid Models:** Some researchers have integrated physical models with machine learning to create hybrid approaches that retain theoretical interpretability while improving prediction accuracy (Adelaja et al., 2020).

CONCLUSION

Nanofluids represent a significant advancement in heat transfer science, enabling unprecedented control over thermal properties through nanoscale engineering. Theoretical models, experimental findings, and simulation tools have collectively shaped a solid foundation for nanofluid research. Despite challenges in stability, cost, and standardization, nanofluids continue to show promise across multiple sectors, including electronics cooling, automotive, renewable energy, and biomedicine. With ongoing advancements in hybrid formulations, green synthesis, and data-driven design, nanofluids are poised to play a central role in the next generation of thermal management systems.

REFERENCES

- Adelaja, A. O., Al-Mubaddel, F. S., Awad, M. M., Farhan, A. A., & Abdelrazek, A. M. (2020). Hybrid nanofluids as coolant for efficient thermal energy management: A review.
 Journal of Cleaner Production, 274, 122803. https://doi.org/10.1016/j.jclepro.2020.122803
- 2. Buongiorno, J. (2006). Convective transport in nanofluids. *Journal of Heat Transfer*, 128(3), 240–250. https://doi.org/10.1115/1.2150834
- 3. Chandrasekar, M., Suresh, S., & Chandra Bose, A. (2010). Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al₂O₃/water nanofluid. *Experimental Thermal and Fluid Science*, 34(2), 210–216. https://doi.org/10.1016/j.expthermflusci.2009.10.022
- 4. Choi, S. U. S. (1995). Enhancing thermal conductivity of fluids with nanoparticles. *ASME International Mechanical Engineering Congress & Exposition*, 66(1), 99–105.

- 5. Das, M. K., Chatterjee, S., & Das, N. N. (2016). Stability issues in nanofluids. International Journal of Thermal Sciences, 109, 109–124. https://doi.org/10.1016/j.ijthermalsci.2016.06.013
- 6. Das, S. K., Choi, S. U. S., & Patel, H. E. (2006). Heat transfer in nanofluids—A review. Heat Transfer Engineering, 27(10), 3–19. https://doi.org/10.1080/01457630600904593
- Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol–based nanofluids containing copper nanoparticles. *Applied Physics Letters*, 78(6),718–720. https://doi.org/10.1063/1.1341218
- 8. Fotukian, S. M., & Nasr Esfahany, M. (2010). Experimental investigation of turbulent convective heat transfer of dilute γ-Al₂O₃/water nanofluid inside a circular tube. *International Journal of Heat and Fluid Flow, 31(4), 606–612.* https://doi.org/10.1016/j.ijheatfluidflow.2010.02.015
- 9. Ghadimi, A., Saidur, R., &Metselaar, H. S. C. (2011). A review of nanofluid stability properties and characterization in stationary conditions. *International Journal of Heat and Mass Transfer*, 54(17–18), 4051–4068. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014
- 10. Sinvestigation and development of new correlations for thermal conductivity of CNTs—GNPs/EG hybrid nanofluid. International Communications in Heat and Mass Transfer, 76, 328–335. https://doi.org/10.1016/j.icheatmasstransfer.2016.06.011
- 11. Heris, S. Z., Esfahany, M. N., & Etemad, S. G. (2007). Experimental investigation of convective heat transfer of Al₂O₃/water nanofluid in circular tube. *International Journal of Heat and Fluid Flow*, 28(2), 203–210. https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001
- 12. Hwang, Y., Park, H. S., Lee, J. K., Jung, W. H., Lee, C. G., & Jang, S. P. (2007). Stability and thermal conductivity characteristics of nanofluids. *Thermochimica Acta*, 455(1–2), 70–74. https://doi.org/10.1016/j.tca.2006.11.036
- 13. Kole, M., & Dey, T. K. (2010). Viscosity of alumina nanoparticles dispersed in car engine coolant. *Experimental Thermal and Fluid Science*, 34(6), 677–683. https://doi.org/10.1016/j.expthermflusci.2009.12.009

- 14. Krishna, K. S., Kandasamy, R., Shanmugam, S., & Balasubramanian, S. (2020). Review on preparation, stability, thermophysical properties and application of hybrid nanofluids. Renewable and Sustainable Energy Reviews, 124,109741. https://doi.org/10.1016/j.rser.2020.109741
- 15. Lee, J., &Mudawar, I. (2007). Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. *International Journal of Heat and Mass*Transfer, 50(3–4), 452–463. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.001
- 16. Li, C. H., & Peterson, G. P. (2009). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics, 101(4), 044312. https://doi.org/10.1063/1.2436472
- 17. Masuda, H., Ebata, A., Teramae, K., &Hishinuma, N. (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultrafine particles. Netsu Bussei (Japan), 4, 227–233.
- 18. Minea, A. A. (2016). Hybrid nanofluids based on Al₂O₃ and TiO₂ nanostructures: A review. Journal of Molecular Liquids, 219, 301–314. https://doi.org/10.1016/j.molliq.2016.03.031
- 19. Minea, A. A., & Mihaela, D. T. (2017). Nanofluids for heat transfer: An engineering approach. CRC Press.
- 20. Murshed, S. M. S., Leong, K. C., & Yang, C. (2005). Enhanced thermal conductivity of TiO₂—water based nanofluids. International Journal of Thermal Sciences, 44(4), 367–373. https://doi.org/10.1016/j.ijthermalsci.2004.12.005
- 21. Murshed, S. M. S., Leong, K. C., & Yang, C. (2008). Investigations of thermal conductivity and viscosity of nanofluids. *International Journal of Thermal Sciences*, 47(5), 560–568. https://doi.org/10.1016/j.ijthermalsci.2007.05.004
- 22. Naphon, P., &Thongkum, J. (2018). Thermal performance and pressure drop of the horizontal concentric tube heat exchanger using hybrid nanofluids. *International Communications in Heat and Mass Transfer*, 97, 42–50. https://doi.org/10.1016/j.icheatmasstransfer.2018.07.001

- 23. Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., & Angue Mintsa, H. (2007). Heat transfer enhancement using Al₂O₃—water nanofluid for an electronic liquid cooling system. *Applied Thermal Engineering*, 27(8–9), 1501–1506. https://doi.org/10.1016/j.applthssermaleng.2006.09.028
- 24. Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. *Experimental Heat Transfer*, 11(2), 151–170. https://doi.org/10.1080/08916159808946559
- 25. Prasher, R., Song, D., Wang, J., & Phelan, P. (2006). Measurements of nanofluid viscosity and its implications for thermal applications. *Applied Physics Letters*, 89(13), 133108. https://doi.org/10.1063/1.2356113
- 26. Putra, N., Thiesen, P., & Roetzel, W. (2003). *Natural convection of nano-fluids. Heat and Mass Transfer*, 39, 775–784. https://doi.org/10.1007/s00231-002-0382-z
- 27. Saidur, R., Leong, K. Y., & Mohammed, H. A. (2011). A review on applications and challenges of nanofluids. *Renewable and Sustainable Energy Reviews*, 15(3), 1646–1668. https://doi.org/10.1016/j.rser.2010.11.035
- 28. Tiwari, A., Patel, H. E., Sundararajan, T., Das, S. K., & Choi, S. U. S. (2020). Thermal conductivity of hybrid nanofluids: A review. *Materials Today: Proceedings*, 26, 129–133. https://doi.org/10.1016/j.matpr.2019.12.151
- 29. Wang, X., Xu, X., & Choi, S. U. S. (1999). Thermal conductivity of nanoparticle–fluid mixture. *Journal of Thermophysics and Heat Transfer*, 13(4), 474–480. https://doi.org/10.2514/2.6486
- 30. Wen, D., & Ding, Y. (2005). Formulation of nanofluids for natural convective heat transfer applications. *International Journal of Heat and Fluid Flow*, 26(6), 855–864. https://doi.org/10.1016/j.ijheatfluidflow.2005.10.005
- 31. Xie, H., Wang, J., & Xi, Y. (2006). Thermal conductivity of suspensions containing nanosized alumina particles. *International Journal of Thermophysics*, 27(2), 569–580. https://doi.org/10.1007/s10765-006-0063-8
- 32. Xuan, Y., & Li, Q. (2000). Heat transfer enhancement of nanofluids. *International Journal of Heat and Fluid Flow*, 21(1), 58–64. https://doi.org/10.1016/S0142-727X(99)00067-3

- 33. Yu, W., & Xie, H. (2012). A review on nanofluids: Preparation, stability mechanisms, and applications. *Journal of Nanomaterials*, 2012, Article 435873. https://doi.org/10.1155/2012/435873
- 34. Zyla, A., & Nowak, D. (2015). Stability of nanofluids: A review. Experimental Thermal and Fluid Science, 68, 223–236. https://doi.org/10.1016/j.expthermflusci.2015.05.018